ترغب بنشر مسار تعليمي؟ اضغط هنا

NLTE modeling of Stokes vector center-to-limb variations in the CN violet system

121   0   0.0 ( 0 )
 نشر من قبل Alexander Shapiro
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The solar surface magnetic field is connected with and even controls most of the solar activity phenomena. Zeeman effect diagnostics allow for measuring only a small fraction of the fractal-like structured magnetic field. The remaining hidden magnetic fields can only be accessed with the Hanle effect. Molecular lines are very convenient for applying the Hanle effect diagnostics thanks to the broad range of magnetic sensitivities in a narrow spectral region. With the UV version of the Zurich Imaging Polarimeter ZIMPOL II installed at the 45 cm telescope of the Istituto Ricerche Solari Locarno (IRSOL), we simultaneously observed intensity and linear polarization center-to-limb variations in two spectral regions containing the (0,0) and (1,1) bandheads of the CN B 2 {Sigma} - X 2 {Sigma} system. Here we present an analysis of these observations. We have implemented coherent scattering in molecular lines into a NLTE radiative transfer code. A two-step approach was used. First, we separately solved the statistical equilibrium equations and compute opacities and intensity while neglecting polariza- tion. Then we used these quantities as input for calculating scattering polarization and the Hanle effect. We have found that it is impossible to fit the intensity and polarization simultaneously at different limb angles in the frame- work of standard 1D modeling. The atmosphere models that provide correct intensity center-to-limb variations fail to fit linear polar- ization center-to-limb variations due to lacking radiation field anisotropy. We had to increase the anisotropy by means of a specially introduced free parameter. This allows us to successfully interpret our observations. We discuss possible reasons for underestimating the anisotropy in the 1D modeling.



قيم البحث

اقرأ أيضاً

Weak entangled magnetic fields with mixed polarity occupy the main part of the quiet Sun. The Zeeman effect diagnostics fails to measure such fields because of cancellation in circular polarization. However, the Hanle effect diagnostics, accessible t hrough the second solar spectrum, provides us with a very sensitive tool for studying the distribution of weak magnetic fields on the Sun. Molecular lines are very strong and even dominate in some regions of the second solar spectrum. The CN $B {}^{2} Sigma - X {}^{2} Sigma$ system is one of the richest and most promising systems for molecular diagnostics and well suited for the application of the differential Hanle effect method. The aim is to interpret observations of the CN $B {}^{2} Sigma - X {}^{2} Sigma$ system using the Hanle effect and to obtain an estimation of the magnetic field strength. We assume that the CN molecular layer is situated above the region where the continuum radiation is formed and employ the single-scattering approximation. Together with the Hanle effect theory this provides us with a model that can diagnose turbulent magnetic fields. We have succeeded in fitting modeled CN lines in several regions of the second solar spectrum to observations and obtained a magnetic field strength in the range from 10--30 G in the upper solar photosphere depending on the considered lines.
We measured the center-to-limb variation of the brightness temperature, $T_b$, from ALMA full-disk images at two frequencies and inverted the solution of the transfer equation to obtain the electron temperature, $T_e$ as a function of optical depth, $tau$. The ALMA images are very similar to AIA images at 1600AA. The brightness temperature at the center of the disk is 6180 and 7250 K at 239 and 100 GHz respectively, with dispersions of 100 and 170 K. Plage regions stand out clearly in the 239/100 GHz intensity ratio, while faculae and filament lanes do not. The solar disk radius, reduced to 1 AU, is $961.1pm2.5$ arcsec and $964.1pm4.5$ arcsec at 239 and 100 GHz respectively. A slight but statistically significant limb brightening is observed at both frequencies. The inversion of the center-to-limb curves shows that $T_e$ varies linearly with the logarithm of optical depth for $0.34<tau_{100,GHz}<12$, with a slope $dln T_e/dtau=-608$ K. Our results are 5% lower than predicted by the average quiet sun model C of Fontenla et al. (1993), but do not confirm previous reports that the mm-$lambda$ solar spectrum is better fitted with models of the cell interior.
We present the properties of the inverse Evershed flow (IEF) based on the center-to-limb variation of the plasma speed and loop geometry of chromospheric superpenumbral fibrils in eleven sunspots that were located at a wide range of heliocentric angl es from 12 to 79 deg. The observations were acquired at the Dunn Solar Telescope in the spectral lines of Halpha at 656nm, CaII IR at 854 nm and HeI at 1083 nm. All sunspots display opposite line-of-sight (LOS) velocities on the limb and center side with a distinct shock signature near the outer penumbral edge. We developed a simplified flexible sunspot model assuming axisymmetry and prescribing the radial flow speed profile at a known loop geometry to replicate the observed two-dimensional IEF patterns under different viewing angles. The simulated flow maps match the observations for chromospheric loops with 10-20 Mm length starting at 0.8-1.1 sunspot radii, an apex height of 2-3Mm and a true constant flow speed of 2-9km/s. We find on average a good agreement of the simulated velocities and the observations on elliptical annuli around the sunspot. Individual IEF channels show a significant range of variation in their properties and reach maximal LOS speeds of up to 12km/s. Upwards or downwards directed flows do not show a change of sign in the LOS velocities for heliocentric angles above 30 deg. Our results are consistent with the IEF being caused by a siphon flow mechanism driving a flow at a constant sonic speed along elevated loops with a flattened top in the chromosphere.
106 - C. Allende Prieto 2004
We present new observations of the center-to-limb variation of spectral lines in the quiet Sun. Our long-slit spectra are corrected for scattered light, which amounts to 4-8 % of the continuum intensity, by comparison with a Fourier transform spectru m of the disk center. We examine the effect of inelastic collisions with neutral hydrogen in NLTE line formation calculations of the oxygen infrared triplet, and the Na I 6160.8 A line. Adopting a classical one-dimensional theoretical model atmosphere, we find that the sodium transition, formed in higher layers, is much more effectively thermalized by hydrogen collisions than the high-excitation oxygen lines. This result appears as a simple consequence of the decrease of the ratio NH/Ne with depth in the solar photosphere. The center-to-limb variation of the selected lines is studied both under LTE and NLTE conditions. In the NLTE analysis, inelastic collisions with hydrogen atoms are considered with a simple approximation or neglected, in an attempt to test the validity of such approximation. For the sodium line studied, the best agreement between theory and observation happens when NLTE is considered and inelastic collisions with hydrogen are neglected in the rate equations. The analysis of the oxygen triplet benefits from a very detailed calculation using an LTE three-dimensional model atmosphere and NLTE line formation. The chi**2 statistics favors including hydrogen collisions with the approximation adopted, but the oxygen abundance derived in that case is significantly higher than the value derived from OH infrared transitions.
137 - J. A. Bonet 2011
CONTEXT: The quiet Sun magnetic fields produce ubiquitous bright points (BPs) that cover a significant fraction of the solar surface. Their contribution to the total solar irradiance (TSI) is so-far unknown. AIMS: To measure the center-to-limb variat ion (CLV) of the fraction of solar surface covered by quiet Sun magnetic bright points. The fraction is referred to as fraction of covered surface, or FCS. METHODS: Counting of the area covered by BPs in G-band images obtained at various heliocentric angles with the 1-m Swedish Solar Telescope on La Palma. Through restoration, the images are close to the diffraction limit of the instrument (~0.1 arcsec). RESULTS: The FCS is largest at disk center (~1 %), and then drops down to become 0.2 % at mu= 0.3 (with mu the cosine of the heliocentric angle. The relationship has large scatter, which we evaluate comparing different subfields within our FOVs. We work out a toy-model to describe the observed CLV, which considers the BPs to be depressions in the mean solar photosphere characterized by a depth, a width, and a spread of inclinations. Although the model is poorly constrained by observations, it shows the BPs to be shallow structures (depth < width) with a large range of inclinations. We also estimate how different parts of the solar disk may contribute to TSI variations, finding that 90 % is contributed by BPs having mu > 0.5, and half of it is due to BPs with mu > 0.8.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا