ترغب بنشر مسار تعليمي؟ اضغط هنا

Decoherence, Autler-Townes effect, and dark states in two-tone driving of a three-level superconducting system

109   0   0.0 ( 0 )
 نشر من قبل G. S. Paraoanu
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed theoretical analysis of a multi-level quantum system coupled to two radiation fields and subject to decoherence. We concentrate on an effect known from quantum optics as the Autler-Townes splitting, which has been recently demonstrated experimentally [M. A. Sillanpaa et al., Phys. Rev. Lett. 103, 193601 (2009)] in a superconducting phase qubit. In the three-level approximation, we derive analytical solutions and describe how they can be used to extract the decoherence rates and to account for the measurement data. Better agreement with the experiment can be obtained by extending this model to five levels. Finally, we investigate the stationary states created in the experiment and show that their structure is close to that of dark states.



قيم البحث

اقرأ أيضاً

Routers, switches, and repeaters are essential components of modern information-processing systems. Similar devices will be needed in future superconducting quantum computers. In this work we investigate experimentally the time evolution of Autler-To wnes splitting in a superconducting phase qubit under the application of a control tone resonantly coupled to the second transition. A three-level model that includes independently determined parameters for relaxation and dephasing gives excellent agreement with the experiment. The results demonstrate that the qubit can be used as a ON/OFF switch with 100 ns operating time-scale for the reflection/transmission of photons coming from an applied probe microwave tone. The ON state is realized when the control tone is sufficiently strong to generate an Autler-Townes doublet, suppressing the absorption of the probe tone photons and resulting in a maximum of transmission.
195 - Z.H. Peng , J.H. Ding , Y. Zhou 2017
We experimentally study a vacuum-induced Autler-Townes doublet in a superconducting three-level artificial atom strongly coupled to a coplanar waveguide resonator and simultaneously to a transmission line. The Autler-Townes splitting is observed in t he reflection spectrum from the three-level atom in a transition between the ground state and the second excited state when the transition between the two excited states is resonant with a resonator. By applying a driving field to the resonator, we observe a change in the regime of the Autler-Townes splitting from quantum (vacuum-induced) to classical (with many resonator photons). Furthermore, we show that the reflection of propagating microwaves in a transmission line could be controlled by different frequency single photons in a resonator.
We study the absorption spectrum of a probe field by a {Lambda}-type three-level system, which is coupled to a quantized control field through the two upper energy levels. The probe field is applied to the ground and the second excited states. When t he quantized control field is in vacuum, we derive a threshold condition to discern vacuum induced transparency (VIT) and vacuum induced Autler- Townes splitting (ATS). We also find that the parameter change from VIT to vacuum induced ATS is very similar to that from broken PT symmetry to PT symmetry. Moreover, we find the photon number resolved spectrum in the parameter regime of vacuum induced ATS when the mean photon number of the quantized control field is changed from zero (vacuum) to a finite number. However, there is no photon number resolved spectrum in the parameter regime of VIT even that the quantized control field contains the finite number of photons. Finally, we further discuss possible experimental realization.
A superconducting qubit was driven in an ultrastrong fashion by an oscillatory microwave field, which was created by coupling via the nonlinear Josephson energy. The observed Stark shifts of the `atomic levels are so pronounced that corrections even beyond the lowest-order Bloch-Siegert shift are needed to properly explain the measurements. The quasienergies of the dressed two-level system were probed by resonant absorption via a cavity, and the results are in agreement with a calculation based on the Floquet approach.
It is shown by theoretical simulation that tuning of the pump power can induce mixing and crossing of Autler-Townes(A-T)components of closely spaced transitions in atoms. Pump radiation also leads to small shifts of the central hole of A-T doublet. O ff-resonance pumping gives an asymmetry in the A-T components and by controlling pump frequency detuning it is also possible to mix the A-T components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا