ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear inverse problems with noise: primal and primal-dual splitting

136   0   0.0 ( 0 )
 نشر من قبل Francois-Xavier Dupe
 تاريخ النشر 2011
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose two algorithms for solving linear inverse problems when the observations are corrupted by noise. A proper data fidelity term (log-likelihood) is introduced to reflect the statistics of the noise (e.g. Gaussian, Poisson). On the other hand, as a prior, the images to restore are assumed to be positive and sparsely represented in a dictionary of waveforms. Piecing together the data fidelity and the prior terms, the solution to the inverse problem is cast as the minimization of a non-smooth convex functional. We establish the well-posedness of the optimization problem, characterize the corresponding minimizers, and solve it by means of primal and primal-dual proximal splitting algorithms originating from the field of non-smooth convex optimization theory. Experimental results on deconvolution, inpainting and denoising with some comparison to prior methods are also reported.



قيم البحث

اقرأ أيضاً

In this paper, we propose two algorithms for solving linear inverse problems when the observations are corrupted by Poisson noise. A proper data fidelity term (log-likelihood) is introduced to reflect the Poisson statistics of the noise. On the other hand, as a prior, the images to restore are assumed to be positive and sparsely represented in a dictionary of waveforms. Piecing together the data fidelity and the prior terms, the solution to the inverse problem is cast as the minimization of a non-smooth convex functional. We establish the well-posedness of the optimization problem, characterize the corresponding minimizers, and solve it by means of primal and primal-dual proximal splitting algorithms originating from the field of non-smooth convex optimization theory. Experimental results on deconvolution and comparison to prior methods are also reported.
We propose an algorithm-independent framework to equip existing optimization methods with primal-dual certificates. Such certificates and corresponding rate of convergence guarantees are important for practitioners to diagnose progress, in particular in machine learning applications. We obtain new primal-dual convergence rates, e.g., for the Lasso as well as many L1, Elastic Net, group Lasso and TV-regularized problems. The theory applies to any norm-regularized generalized linear model. Our approach provides efficiently computable duality gaps which are globally defined, without modifying the original problems in the region of interest.
This paper considers a general convex constrained problem setting where functions are not assumed to be differentiable nor Lipschitz continuous. Our motivation is in finding a simple first-order method for solving a wide range of convex optimization problems with minimal requirements. We study the method of weighted dual averages (Nesterov, 2009) in this setting and prove that it is an optimal method.
We propose a variant of the Frank-Wolfe algorithm for solving a class of sparse/low-rank optimization problems. Our formulation includes Elastic Net, regularized SVMs and phase retrieval as special cases. The proposed Primal-Dual Block Frank-Wolfe al gorithm reduces the per-iteration cost while maintaining linear convergence rate. The per iteration cost of our method depends on the structural complexity of the solution (i.e. sparsity/low-rank) instead of the ambient dimension. We empirically show that our algorithm outperforms the state-of-the-art methods on (multi-class) classification tasks.
We study the effect of additive noise to the inversion of FIOs associated to a diffeomorphic canonical relation. We use the microlocal defect measures to measure the power spectrum of the noise and analyze how that power spectrum is transformed under the inversion. In particular, we compute the standard deviation of the noise added to the inversion as a function of the standard deviation of the noise added to the data. As an example, we study the Radon transform in the plane in parallel and fan-beam coordinates, and present numerical examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا