ﻻ يوجد ملخص باللغة العربية
We study a frustrated 3D antiferromagnet of stacked $J_1 - J_2$ layers. The intermediate quantum spin liquid phase, present in the 2D case, narrows with increasing interlayer coupling and vanishes at a triple point. Beyond this there is a direct first-order transition from N{ e}el to columnar order. Possible applications to real materials are discussed.
The zero-temperature quantum phase diagram of the spin-$frac{1}{2}$ $J_{1}$--$J_{2}$--$J_{1}^{perp}$ model on an $AA$-stacked bilayer honeycomb lattice is investigated using the coupled cluster method (CCM). The model comprises two monolayers in each
The zero-temperature phase diagram of the spin-$frac{1}{2}$ $J_{1}$--$J_{2}$--$J_{1}^{perp}$ model on an $AA$-stacked square-lattice bilayer is studied using the coupled cluster method implemented to very high orders. Both nearest-neighbor (NN) and f
The low-energy electronic structure of the J_{eff}=1/2 spin-orbit insulator Sr3Ir2O7 has been studied by means of angle-resolved photoemission spectroscopy. A comparison of the results for bilayer Sr3Ir2O7 with available literature data for the relat
Heavy transition metal magnets with $J_{rm eff}$ $=$ 1/2 electronic ground states have attracted recent interest due to their penchant for hosting new classes of quantum spin liquids and superconductors. Unfortunately, model systems with ideal $J_{rm
By means of density functional theory plus dynamical mean-field theory (DFT+DMFT) calculations and resonant inelastic x-ray scattering (RIXS) experiments, we investigate the high-pressure phases of the spin-orbit-coupled $J_{rm{eff}}=3/2$ insulator G