ترغب بنشر مسار تعليمي؟ اضغط هنا

Black Hole Masses and Star Formation Rates of z >1 Dust Obscured Galaxies (DOGs): Results from Keck OSIRIS Integral Field Spectroscopy

167   0   0.0 ( 0 )
 نشر من قبل Jason Melbourne
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have obtained high spatial resolution Keck OSIRIS integral field spectroscopy of four z~1.5 ultra-luminous infrared galaxies that exhibit broad H-alpha emission lines indicative of strong AGN activity. The observations were made with the Keck laser guide star adaptive optics system giving a spatial resolution of 0.1, or <1 kpc at these redshifts. These high spatial resolution observations help to spatially separate the extended narrow-line regions --- possibly powered by star formation --- from the nuclear regions, which may be powered by both star formation and AGN activity. There is no evidence for extended, rotating gas disks in these four galaxies. Assuming dust correction factors as high as A(H-alpha)=4.8 mag, the observations suggest lower limits on the black hole masses of (1 - 9) x 10^8 solar masses, and star formation rates <100 solar masses per year. The black hole masses and star formation rates of the sample galaxies appear low in comparison to other high-z galaxies with similar host luminosities. We explore possible explanations for these observations including, host galaxy fading, black hole growth, and the shut down of star formation.



قيم البحث

اقرأ أيضاً

A simple mid-infrared-to-optical color criterion of R-[24]>14 Vega mag results in a robust selection of approximately half of the redshift 2 ultraluminous infrared galaxy (ULIRG) population. These `Dust-Obscured Galaxies, or DOGs, have many propertie s that suggest that they are good candidates for systems in a transition phase between gas-rich mergers and QSOs.
We investigate the properties (e.g. star formation rate, dust attentuation, stellar mass and metallicity) of a sample of infrared luminous galaxies at z sim 1 via near-IR spectroscopy with Subaru-FMOS. Our sample consists of Herschel SPIRE and Spitze r MIPS selected sources in the COSMOS field with photometric redshifts in the range 0.7 < z-phot < 1.8, which have been targeted in 2 pointings (0.5 sq. deg.) with FMOS. We find a modest success rate for emission line detections, with candidate H{alpha} emission lines detected for 57 of 168 SPIRE sources (34 per cent). By stacking the near-IR spectra we directly measure the mean Balmer decrement for the H{alpha} and H{beta} lines, finding a value of <E(B-V)> = 0.51pm0.27 for <LIR> = 10^12 Lsol sources at <z> = 1.36. By comparing star formation rates estimated from the IR and from the dust uncorrected H{alpha} line we find a strong relationship between dust attenuation and star formation rate. This relation is broadly consistent with that previously seen in star-forming galaxies at z ~ 0.1. Finally, we investigate the metallicity via the N2 ratio, finding that z ~ 1 IR-selected sources are indistinguishable from the local mass-metallicity relation. We also find a strong correlation between dust attentuation and metallicity, with the most metal-rich IR-sources experiencing the largest levels of dust attenuation.
141 - Chun Ly 2012
Using deep narrow-band and broad-band imaging, we identify 401 z~0.40 and 249 z~0.49 H-alpha line-emitting galaxies in the Subaru Deep Field. Compared to other H-alpha surveys at similar redshifts, our samples are unique since they probe lower H-alph a luminosities, are augmented with multi-wavelength (rest-frame 1000AA--1.5 microns) coverage, and a large fraction (20%) of our samples has already been spectroscopically confirmed. Our spectra allow us to measure the Balmer decrement for nearly 60 galaxies with H-beta detected above 5-sigma. The Balmer decrements indicate an average extinction of A(H-alpha)=0.7^{+1.4}_{-0.7} mag. We find that the Balmer decrement systematically increases with higher H-alpha luminosities and with larger stellar masses, in agreement with previous studies with sparser samples. We find that the SFRs estimated from modeling the spectral energy distribution (SED) is reliable---we derived an intrinsic H-alpha luminosity which is then reddened assuming the color excess from SED modeling. The SED-predicted H-alpha luminosity agrees with H-alpha narrow-band measurements over 3 dex (rms of 0.25 dex). We then use the SED SFRs to test different statistically-based dust corrections for H-alpha and find that adopting one magnitude of extinction is inappropriate: galaxies with lower luminosities are less reddened. We find that the luminosity-dependent dust correction of Hopkins et al. yields consistent results over 3 dex (rms of 0.3 dex). Our comparisons are only possible by assuming that stellar reddening is roughly half of nebular reddening. The strong correspondence argue that with SED modeling, we can derive reliable intrinsic SFRs even in the absence of H-alpha measurements at z~0.5.
147 - V. Buat , S. Heinis , M. Boquien 2013
We seek to derive star formation rates (SFR) and stellar masses (M_star) in distant galaxies and to quantify the main uncertainties affecting their measurement. We explore the impact of the assumptions made in their derivation with standard calibrati ons or through a fitting process, as well as the impact of the available data, focusing on the role of IR emission originating from dust. We build a sample of galaxies with z>1, all observed from the UV to the IR (rest frame). The data are fitted with the code CIGALE, which is also used to build and analyse a catalogue of mock galaxies. Models with different SFHs are introduced. We define different set of data, with or without a good sampling of the UV range, NIR, and thermal IR data. The impact of these different cases on the determination of M_star and SFR are analysed. Exponentially decreasing models with a redshift formation of the stellar population z ~8 cannot fit the data correctly. The other models fit the data correctly at the price of unrealistically young ages when the age of the single stellar population is taken to be a free parameter. The best fits are obtained with two stellar populations. As long as one measurement of the dust emission continuum is available, SFR are robustly estimated whatever the chosen model is, including standard recipes. M_star measurement is more subject to uncertainty, depending on the chosen model and the presence of NIR data, with an impact on the SFR-M_star scatter plot. Conversely, when thermal IR data from dust emission are missing, the uncertainty on SFR measurements largely exceeds that of stellar mass. Among all physical properties investigated here, the stellar ages are found to be the most difficult to constrain and this uncertainty acts as a second parameter in SFR measurements and as the most important parameter for M_star measurements.
The Spitzer Space Telescope has identified a population of ultra-luminous infrared galaxies (ULIRGs) at z ~ 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses of two populations of Spitzer-selected U LIRGs, both of which have extremely red R-[24] colors (dust-obscured galaxies, or DOGs) and compare our results with sub-millimeter selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-IR spectral energy distribution (SED) at rest-frame 1.6um associated with stellar emission (bump DOGs), while the other set of 51 DOGs has a power-law dominated mid-IR SED with spectral features typical of obscured AGN (power-law DOGs). We use stellar population synthesis models applied self-consistently to broad-band photometry in the rest-frame ultra-violet, optical, and near-infrared of each of these populations and test a variety of stellar population synthesis codes, star-formation histories (SFHs), and initial mass functions (IMFs). Assuming a simple stellar population SFH and a Chabrier IMF, we find that the median and inner quartile stellar masses of SMGs, bump DOGs and power-law DOGs are given by log(M_*/M_sun) = 10.42_-0.36^+0.42, 10.62_-0.32^+0.36, and 10.71_-0.34^+0.40, respectively. Implementing more complicated SFHs with multiple age components increases these mass estimates by up to 0.5 dex. Our stellar mass estimates are consistent with physical mechanisms for the origin of z~2 ULIRGs that result in high star-formation rates for a given stellar mass. Such mechanisms are usually driven by a major merger of two gas-rich systems, rather than smooth accretion of gas and small satellites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا