Superconducting junction of a single-crystalline Au nanowire for an ideal Josephson device


الملخص بالإنكليزية

We report on the fabrication and measurements of a superconducting junction of a single-crystalline Au nanowire, connected to Al electrodes. Current-Voltage characteristic curve shows clear supercurrent branch below the superconducting transition temperature of Al and quantized voltage plateaus on application of microwave radiation, as expected from Josephson relations. Highly transparent (0.95) contacts very close to an ideal limit of 1 are formed at the interface between the normal metal (Au) and the superconductor (Al). The very high transparency is ascribed to the single crystallinity of a Au nanowire and the formation of an oxide-free contact between Au and Al. The sub-gap structures of the differential conductance are well explained by coherent multiple Andreev reflections (MAR), the hallmark of mesoscopic Josephson junctions. These observations demonstrate that single crystalline Au nanowires can be employed to develop novel quantum devices utilizing coherent electrical transport.

تحميل البحث