ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical evolution of protoplanetary disks - the effects of viscous accretion, turbulent mixing and disk winds

123   0   0.0 ( 0 )
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared LTE line emission spectra and compare these with recent Spitzer observations. Our results show that if H2 formation on warm grains is taken into consideration, the H2O and OH abundances in the disk surface increase significantly. We find the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line emission from the disk and subsequently improving agreement with observations. We find that NH3, CH3OH, C2H2 and sulphur-containing species are greatly enhanced by the inclusion of turbulent mixing. We demonstrate that disk winds potentially affect the disk chemistry and the resulting molecular line emission in a similar manner to that found when mixing is included.



قيم البحث

اقرأ أيضاً

103 - M. Tazzari , L. Testi , A. Natta 2017
The formation of planets strongly depends on the total amount as well as on the spatial distribution of solids in protoplanetary disks. Thanks to the improvements in resolution and sensitivity provided by ALMA, measurements of the surface density of mm-sized grains are now possible on large samples of disks. Such measurements provide statistical constraints that can be used to inform our understanding of the initial conditions of planet formation. We analyze spatially resolved observations of 36 protoplanetary disks in the Lupus star forming complex from our ALMA survey at 890 micron, aiming to determine physical properties such as the dust surface density, the disk mass and size and to provide a constraint on the temperature profile. We fit the observations directly in the uv-plane using a two-layer disk model that computes the 890 micron emission by solving the energy balance at each disk radius. For 22 out of 36 protoplanetary disks we derive robust estimates of their physical properties. The sample covers stellar masses between ~0.1 and ~2 Solar masses, and we find no trend between the average disk temperatures and the stellar parameters. We find, instead, a correlation between the integrated sub-mm flux (a proxy for the disk mass) and the exponential cut-off radii (a proxy of the disk size) of the Lupus disks. Comparing these results with observations at similar angular resolution of Taurus-Auriga/Ophiuchus disks found in literature and scaling them to the same distance, we observe that the Lupus disks are generally fainter and larger at a high level of statistical significance. Considering the 1-2 Myr age difference between these regions, it is possible to tentatively explain the offset in the disk mass/disk size relation with viscous spreading, however with the current measurements other mechanisms cannot be ruled out.
We report new global ideal MHD simulations for thin accretion disks (with thermal scale height H/R=0.1 and 0.05) threaded by net vertical magnetic fields. Our computations span three orders of magnitude in radius, extend all the way to the pole, and are evolved for more than one viscous time over the inner decade in radius. Static mesh refinement is used to properly resolve MRI. We find that:(1) inward accretion occurs mostly in the upper magnetically dominated regions of the disk, similar to the predictions from some previous analytical work and the coronal accretion in previous GRMHD simulations. Rapid inflow in the upper layers combined with slow outflow at the midplane creates strong $Rphi$ and $zphi$ stresses in the mean field; the vertically integrated $alphasim 0.5-1$ when the initial field has $beta_{0}=10^3$ at the midplane. (2) A quasi-static global field geometry is established in which flux transport by inflows at the surface is balanced by turbulent diffusion. The field is strongly pinched inwards at the surface. A steady-state advection-diffusion model, with turbulent magnetic Prandtl number of order unity, reproduces this geometry well. (3) Weak unsteady disk winds are launched at $z/Rsim1$ with the Alfven radius $R_{A}/R_{0}sim3$. Although the wind is episodic, the time averaged properties are well described by steady wind theory. Wind is not efficient at transporting angular momentum. Even with $beta_{0}=10^3$, only 5% of the angular momentum transport is driven by torque from the wind, and the wind mass flux from the inner decade of radius is only $sim$ 0.4% of the mass accretion rate. With weaker fields or thinner disks, the wind contributes even less. (4) Most of the disk accretion is driven by the $Rphi$ stress from the MRI and global magnetic fields. Our simulations have many applications to astrophysical accretion disk systems.
We discovered a new growth mode of dust grains to km-sized bodies in protoplanetary disks that evolve by viscous accretion and magnetically driven disk winds (MDWs). We solved an approximate coagulation equation of dust grains with time-evolving disk s that consist of both gas and solid components by a one-dimensional model. With the grain growth, all solid particles initially drift inward toward the central star by the gas drag force. However, the radial profile of gas pressure, $P$, is modified by the MDW that disperses the gas in an inside-out manner. Consequently, a local concentration of solid particles is created by the converging radial flux of drifting dust grains at the location with the convex upward profile of $P$. When the dimensionless stopping time, ${rm St}$, there exceeds unity, the solid particles spontaneously reach the growth dominated state because of the positive feedback between the suppressed radial drift and the enhanced accumulation of dust particles that drift from the outer part. Once the solid particles are in the drift limited state, the above-mentioned condition of ${rm St} gtrsim 1$ for the dust growth is equivalent with begin{equation} Sigma_{rm d}/Sigma_{rm g}gtrsim eta, onumber end{equation} where $Sigma_{rm d}/Sigma_{rm g}$ is the dust-to-gas surface-density ratio and $eta$ is dimensionless radial pressure-gradient force. As a consequence of the successful growth of dust grains, a ring-like structure containing planetesimal-sized bodies is formed at the inner part of the protoplanetary disks. Such a ring-shaped concentration of planetesimals is expected to play a vital role in the subsequent planet formation.
We present a novel mechanism for the outward transport of crystalline dust particles: the outward radial drift of pebbles. The dust ring structure is frequently observed in protoplanetary disks. One of the plausible mechanisms of the formation of dus t rings is the accumulation of pebbles around the pressure maximum, which is formed by the mass loss due to magnetically driven disk winds. In evolving protoplanetary disks due to magnetically driven disk winds, dust particles can migrate outwardly from the crystallization front to the pressure maximum by radial drift. We found that the outward radial drift process can transport crystalline dust particles efficiently when the radial drift timescale is shorter than the advection timescale. Our model predicts that the crystallinity of silicate dust particles could be as high as 100% inside the dust ring position.
We study details of the UV radiation transfer in a protoplanetary disk, paying attention to the influence of dust growth and sedimentation on the disk density and temperature. Also, we show how the dust evolution affects photoreaction rates of key molecules, like CN and CS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا