ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamo action and magnetic buoyancy in convection simulations with vertical shear

109   0   0.0 ( 0 )
 نشر من قبل Gustavo Guerrero
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A hypothesis for sunspot formation is the buoyant emergence of magnetic flux tubes created by the strong radial shear at the tachocline. In this scenario, the magnetic field has to exceed a threshold value before it becomes buoyant and emerges through the whole convection zone. We follow the evolution of a random seed magnetic field with the aim of study under what conditions it is possible to excite the dynamo instability and whether the dynamo generated magnetic field becomes buoyantly unstable and emerges to the surface as expected in the flux-tube context. We perform numerical simulations of compressible turbulent convection that include a vertical shear layer. Like the solar tachocline, the shear is located at the interface between convective and stable layers. We find that shear and convection are able to amplify the initial magnetic field and form large-scale elongated magnetic structures. The magnetic field strength depends on several parameters such as the shear amplitude, the thickness and location of the shear layer, and the magnetic Reynolds number ($Rm$). Whenever the toroidal magnetic field reaches amplitudes greater a threshold value which is close to the equipartition value, it becomes buoyant and rises into the convection zone where it expands and forms mushroom shape structures. Some events of emergence, i.e. those with the largest amplitudes of the initial field, are able to reach the very uppermost layers of the domain. These episodes are able to modify the convective pattern forming either broader convection cells or convective eddies elongated in the direction of the field. However, in none of these events the field preserves its initial structure.



قيم البحث

اقرأ أيضاً

Core convection and dynamo activity deep within rotating A-type stars of 2 solar masses are studied with 3--D nonlinear simulations. Our modeling considers the inner 30% by radius of such stars, thus capturing within a spherical domain the convective core and a modest portion of the surrounding radiative envelope. The MHD equations are solved using the ASH code to examine turbulent flows and magnetic fields, both of which exhibit intricate time dependence. By introducing small seed magnetic fields into our progenitor hydrodynamic models rotating at one and four times the solar rate, we assess here how the vigorous convection can amplify those fields and sustain them against ohmic decay. Dynamo action is indeed realized, ultimately yielding magnetic fields that are in energy equipartion with the flow. Such magnetism reduces the differential rotation obtained in the progenitors, partly by Maxwell stresses that transport angular momentum poleward and oppose the Reynolds stresses in the latitudinal balance. In contrast, in the radial direction we find that the Maxwell and Reynolds stresses may act together to transport angular momentum. The central columns of slow rotation established in the progenitors are weakened, with the differential rotation waxing and waning in strength as the simulations evolve. We assess the morphology of the flows and magnetic fields, their complex temporal variations, and the manner in which dynamo action is sustained. Differential rotation and helical convection are both found to play roles in giving rise to the magnetic fields. The magnetism is dominated by strong fluctuating fields throughout the core, with the axisymmetric (mean) fields there relatively weak.
64 - L. H. Li 2001
A magnetic flux tube may be considered both as a separate body and as a confined field. As a field, it is affected both by the cyclonic convection ($alpha$-effect) and differential rotation ($Omega$-effect). As a body, the tube experiences not only a buoyant force, but also a dynamic pressure due to downflows above the tube. When these two dynamic effects are incorporated into the $alphaOmega$ dynamo equations, we obtain a dynamo operating in the convection zone. We analyze and solve the extended dynamo equations in the linear approximation by using observed solar internal rotation and assuming a downflow suggested by numerical simulations of the solar convection zone. The results produce: (i) the 22-year cycle period; (ii) the extended butterfly diagram; (iii) the confinement of strong activity to low heliographic latitudes $|Phi|le 35^circ$; (iv) at low latitudes the radial field is in an approximately $pi$ phase lag compared to the toroidal field at the same latitude; (v) the poleward branch is in a $pi/2$ phase lag with respect to the equatorward branch; (vi) most of the magnetic flux is present in a strongly intermittent form, concentraed into strong flux tubes; (vii) the magnetic field peaks at a depth of $r=0.96 R_{sun}$; (viii) total solar irradiance varies in phase with the solar cycle activity, having an amplitude of 0.1%; (ix) solar effective temperature varies in phase with the solar cycle activity, having an amplitude of 1.5 $^circ C$; and (x) solar radius also varies in phase with the solar cycle activity, having an amplitude of 20 mas. All these results are in agreement with the corresponding observations.
150 - Benjamin P Brown 2010
Young solar-type stars rotate rapidly and are very magnetically active. The magnetic fields at their surfaces likely originate in their convective envelopes where convection and rotation can drive strong dynamo action. Here we explore simulations of global-scale stellar convection in rapidly rotating suns using the 3-D MHD anelastic spherical harmonic (ASH) code. The magnetic fields built in these dynamos are organized on global-scales into wreath-like structures that span the convection zone. We explore one case rotates five times faster than the Sun in detail. This dynamo simulation, called case D5, has repeated quasi-cyclic reversals of global-scale polarity. We compare this case D5 to the broader family of simulations we have been able to explore and discuss how future simulations and observations can advance our understanding of stellar dynamos and magnetism.
The magnetic fields of solar-type stars are observed to cycle over decadal periods -11 years in the case of the Sun. The fields originate in the turbulent convective layers of stars and have a complex dependency upon stellar rotation rate. We have pe rformed a set of turbulent global simulations that exhibit magnetic cycles varying systematically with stellar rotation and luminosity. We find that the magnetic cycle period is inversely proportional to the Rossby number, which quantifies the influence of rotation on turbulent convection. The trend relies on a fundamentally non-linear dynamo process and is compatible with the Suns cycle and those of other solar-type stars.
173 - Elizabeth Cole 2013
We report the finding of an azimuthal dynamo wave of a low-order (m=1) mode in direct numerical simulations (DNS) of turbulent convection in spherical shells. Such waves are predicted by mean field dynamo theory and have been obtained previously in m ean-field models. Observational results both from photometry and Doppler imaging have revealed persistent drifts of spots for several rapidly rotating stars, but, although an azimuthal dynamo wave has been proposed as a possible mechanism responsible for this behavior, it has been judged as unlikely, as practical evidence for such waves from DNS has been lacking. The large-scale magnetic field in our DNS, which is due to self-consistent dynamo action, is dominated by a retrograde m=1 mode. Its pattern speed is nearly independent of latitude and does not reflect the speed of the differential rotation at any depth. The extrema of magnetic m=1 structures coincide reasonably with the maxima of m=2 structures of the temperature. These results provide direct support for the observed drifts being due to an azimuthal dynamo wave.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا