ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Redundancy Bounds for Exponential Objectives

157   0   0.0 ( 0 )
 نشر من قبل Michael Baer
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Michael B. Baer




اسأل ChatGPT حول البحث

We present new lower and upper bounds for the compression rate of binary prefix codes optimized over memoryless sources according to two related exponential codeword length objectives. The objectives explored here are exponential-average length and exponential-average redundancy. The first of these relates to various problems involving queueing, uncertainty, and lossless communications, and it can be reduced to the second, which has properties more amenable to analysis. These bounds, some of which are tight, are in terms of a form of entropy and/or the probability of an input symbol, improving on recently discovered bounds of similar form. We also observe properties of optimal codes over the exponential-average redundancy utility.



قيم البحث

اقرأ أيضاً

155 - Michael B. Baer 2007
This paper presents new lower and upper bounds for the compression rate of binary prefix codes optimized over memoryless sources according to various nonlinear codeword length objectives. Like the most well-known redundancy bounds for minimum average redundancy coding - Huffman coding - these are in terms of a form of entropy and/or the probability of an input symbol, often the most probable one. The bounds here, some of which are tight, improve on known bounds of the form L in [H,H+1), where H is some form of entropy in bits (or, in the case of redundancy objectives, 0) and L is the length objective, also in bits. The objectives explored here include exponential-average length, maximum pointwise redundancy, and exponential-average pointwise redundancy (also called dth exponential redundancy). The first of these relates to various problems involving queueing, uncertainty, and lossless communications; the second relates to problems involving Shannon coding and universal modeling. For these two objectives we also explore the related problem of the necessary and sufficient conditions for the shortest codeword of a code being a specific length.
The $l$-th stopping redundancy $rho_l(mathcal C)$ of the binary $[n, k, d]$ code $mathcal C$, $1 le l le d$, is defined as the minimum number of rows in the parity-check matrix of $mathcal C$, such that the smallest stopping set is of size at least $ l$. The stopping redundancy $rho(mathcal C)$ is defined as $rho_d(mathcal C)$. In this work, we improve on the probabilistic analysis of stopping redundancy, proposed by Han, Siegel and Vardy, which yields the best bounds known today. In our approach, we judiciously select the first few rows in the parity-check matrix, and then continue with the probabilistic method. By using similar techniques, we improve also on the best known bounds on $rho_l(mathcal C)$, for $1 le l le d$. Our approach is compared to the existing methods by numerical computations.
98 - Ray Li , Mary Wootters 2021
Batch codes are a useful notion of locality for error correcting codes, originally introduced in the context of distributed storage and cryptography. Many constructions of batch codes have been given, but few lower bound (limitation) results are know n, leaving gaps between the best known constructions and best known lower bounds. Towards determining the optimal redundancy of batch codes, we prove a new lower bound on the redundancy of batch codes. Specifically, we study (primitive, multiset) linear batch codes that systematically encode $n$ information symbols into $N$ codeword symbols, with the requirement that any multiset of $k$ symbol requests can be obtained in disjoint ways. We show that such batch codes need $Omega(sqrt{Nk})$ symbols of redundancy, improving on the previous best lower bounds of $Omega(sqrt{N}+k)$ at all $k=n^varepsilon$ with $varepsilonin(0,1)$. Our proof follows from analyzing the dimension of the order-$O(k)$ tensor of the batch codes dual code.
This paper studies pliable index coding, in which a sender broadcasts information to multiple receivers through a shared broadcast medium, and the receivers each have some message a priori and want any message they do not have. An approach, based on receivers that are absent from the problem, was previously proposed to find lower bounds on the optimal broadcast rate. In this paper, we introduce new techniques to obtained better lower bounds, and derive the optimal broadcast rates for new classes of the problems, including all problems with up to four absent receivers.
In this paper, we revisit the problem of finding the longest systematic-length $k$ for a linear minimum storage regenerating (MSR) code with optimal repair of only systematic part, for a given per-node storage capacity $l$ and an arbitrary number of parity nodes $r$. We study the problem by following a geometric analysis of linear subspaces and operators. First, a simple quadratic bound is given, which implies that $k=r+2$ is the largest number of systematic nodes in the emph{scalar} scenario. Second, an $r$-based-log bound is derived, which is superior to the upper bound on log-base $2$ in the prior work. Finally, an explicit upper bound depending on the value of $frac{r^2}{l}$ is introduced, which further extends the corresponding result in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا