ﻻ يوجد ملخص باللغة العربية
Two-particle angular correlation for charged particles emitted in Au+Au collisions at the center-of-mass of 200 MeV measured at RHIC energies revealed novel structures commonly referred to as a near-side ridge. The ridge phenomenon in relativistic A+A collisions is rooted probably in the initial conditions of the thermal evolution of the system. In this study we analyze the evolution of the bumping transverse structure of the energy density distribution caused by fluctuations of the initial density distributions that could lead to the ridge structures. We suppose that at very initial stage of collisions the typical one-event structure of the initial energy density profile can be presented as the set of longitudinal tubes, which are boost-invariant in some space-rapidity region and are rather thin. These tubes have very high energy density comparing to smooth background density distribution. The transverse velocity and energy density profiles at different times of the evolution till the chemical freeze-out (at the temperature T=165 MeV) willbe reached by the system are calculated for sundry initial scenarios.
We study time evolution of critical fluctuations of conserved charges near the QCD critical point in the context of relativistic heavy ion collisions. A stochastic diffusion equation is employed in order to describe the diffusion property of the crit
We look for fluctuations expected for the QCD critical point using an intermittency analysis in the transverse momentum phase space of protons produced around midrapidity in the 12.5% most central C+C, Si+Si and Pb+Pb collisions at the maximum SPS en
We investigate the role of a finite surface tension during the time-evolution of fluctuations in the net-baryon density. The systems in this study undergo a temperature evolution across the phase transition in the critical region of the QCD phase dia
We present a quantitative study of vorticity formation in peripheral ultrarelativistic heavy ion collisions at sqrt(s)NN = 200 GeV by using the ECHO-QGP numerical code, implementing relativistic dissipative hydrodynamics in the causal Israel-Stewart
We present a simple description of the energy density profile created in a nucleus-nucleus collision, motivated by high-energy QCD. The energy density is modeled as the sum of contributions coming from elementary collisions between localized charges