ﻻ يوجد ملخص باللغة العربية
A coherent state technique is used to generate an Interacting Boson Model (IBM) Hamiltonian energy surface that simulates a mean field energy surface. The method presented here has some significant advantages over previous work. Specifically, that this can be a completely predictive requiring no a priori knowledge of the IBM parameters. The technique allows for the prediction of the low lying energy spectra and electromagnetic transition rates which are of astrophysical interest. Results and comparison with experiment are included for krypton, molybdenum, palladium, cadmium, gadolinium, dysprosium and erbium nuclei.
The possibility that an unconventional depletion in the center of the charge density distribution of certain nuclei occurs due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. We report on ab
We critically examine the differences among the different bare nuclear interactions used in near-barrier heavy ion fusion analysis and Coupled-Channels calculations, and discuss the possibility of extracting the barrier parameters of the bare potenti
We present nucleon elastic scattering calculation based on Greens function formalism in the Random-Phase Approximation. For the first time, the Gogny effective interaction is used consistently throughout the whole calculation to account for the compl
Time-dependent density-matrix propagation is used to demonstrate, in a schematic model of an open quantum system, that the complex potential approach and the Lindblad dissipative dynamics are emph{not} equivalent. While the former preserves coherence
Applying a macroscopic reduction procedure on the improved quantum molecular dynamics (ImQMD) model, the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force characterizing a one-dimensional Langevin-type