ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanism of Pion Production in $alpha$p Scattering at 1 GeV/nucleon

490   0   0.0 ( 0 )
 نشر من قبل Alexander Prokofiev
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The one-pion and two-pion production in the p(alpha, alpha prime)X reaction at an energy of E{alpha} = 4.2 GeV has been studied by simultaneous registration of the scattered alpha particles and the secondary pion or proton. The obtained results demonstrate that the inelastic alpha-particle scattering on the proton at the energy of the experiment proceeds either through excitation and decay of Delta resonance in the projectile or through excitation in the target proton of the Roper resonance, which decays mainly on a nucleon and a pion or a nucleon and a sigma meson - system of two pions in the isospin I = 0, S-wave.



قيم البحث

اقرأ أيضاً

New data on proton and pion production in p+C interactions from the CERN PS and SPS accelerators are used in conjunction with other available data sets to perform a comprehensive survey of backward hadronic cross sections. This survey covers the comp lete backward hemisphere in the range of lab angles from 10 to 180 degrees, from 0.2 to 1.4 GeV/c in lab momentum and from 1 to 400 GeV/c in projectile momentum. Using the constraints of continuity and smoothness of the angular, momentum and energy dependences a consistent description of the inclusive cross sections is established which allows the control of the internal consistency of the nineteen available data sets.
We present strange particle spectra and yields measured at mid-rapidity in $sqrt{text{s}}=200$ GeV proton-proton ($p+p$) collisions at RHIC. We find that the previously observed universal transverse mass ($mathrm{m_{T}}equivsqrt{mathrm{p_{T}}^{2}+mat hrm{m}^{2}}$) scaling of hadron production in $p+p$ collisions seems to break down at higher mt and that there is a difference in the shape of the mt spectrum between baryons and mesons. We observe mid-rapidity anti-baryon to baryon ratios near unity for $Lambda$ and $Xi$ baryons and no dependence of the ratio on transverse momentum, indicating that our data do not yet reach the quark-jet dominated region. We show the dependence of the mean transverse momentum (mpt) on measured charged particle multiplicity and on particle mass and infer that these trends are consistent with gluon-jet dominated particle production. The data are compared to previous measurements from CERN-SPS, ISR and FNAL experiments and to Leading Order (LO) and Next to Leading order (NLO) string fragmentation model predictions. We infer from these comparisons that the spectral shapes and particle yields from $p+p$ collisions at RHIC energies have large contributions from gluon jets rather than quark jets.
Motivated by the recent measurement of proton-proton spin-correlation parameters up to 2.5 GeV laboratory energy, we investigate models for nucleon-nucleon (NN) scattering above 1 GeV. Signatures for a gradual failure of the traditional meson model w ith increasing energy can be clearly identified. Since spin effects are large up to tens of GeV, perturbative QCD cannot be invoked to fix the problems. We discuss various theoretical scenarios and come to the conclusion that we do not have a clear phenomenological understanding of the spin-dependence of the NN interaction above 1 GeV.
156 - Yichun Xu 2009
We report the transverse momentum (pT) distributions for identified charged pions, protons and anti-protons using events triggered by high deposit energy in the Barrel Electro-Magnetic Calorimeter (BEMC) from p + p collisions at psNN = 200 GeV. The s pectra are measured around mid-rapidity (|y|<0.5) over the range of 3<pT<15 GeV/c with particle identification (PID) by the relativistic ionization energy loss (rdE/dx) in the Time Projection Chamber (TPC) in the Solenoidal Tracker at RHIC (STAR). The charged pion, proton and anti-proton spectra at high pT are compared with published results from minimum bias triggered events and the Next-Leading-Order perturbative quantum chromodynamic (NLO pQCD) calculations (DSS, KKP and AKK 2008). In addition, we present the particle ratios of pi-/pi+, pbar/p, p/pi+ and pbar/pi- in p + p collisions.
Transverse momentum distributions and yields for $pi^{pm}$, $K^{pm}$, $p$ and $bar{p}$ in $p+p$ collisions at $sqrt{s}$=200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). These data pr ovide important baseline spectra for comparisons with identified particle spectra in heavy ion collisions at RHIC. We present the inverse slope parameter $T_{rm inv}$, mean transverse momentum $<p_T>$ and yield per unit rapidity $dN/dy$ at each energy, and compare them to other measurements at different $sqrt{s}$ in $p+p$ and $p+bar{p}$ collisions. We also present the scaling properties such as $m_T$ scaling, $x_T$ scaling on the $p_T$ spectra between different energies. To discuss the mechanism of the particle production in $p+p$ collisions, the measured spectra are compared to next-to-leading-order or next-to-leading-logarithmic perturbative quantum chromodynamics calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا