ترغب بنشر مسار تعليمي؟ اضغط هنا

The SAURON project - XVIII. The integrated UV-linestrength relations of early-type galaxies

99   0   0.0 ( 0 )
 نشر من قبل Martin Bureau
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using far (FUV) and near (NUV) ultraviolet photometry from guest investigator programmes on the Galaxy Evolution Explorer (GALEX) satellite, optical photometry from the MDM Observatory and optical integral-field spectroscopy from SAURON, we explore the UV-linestrength relations of the 48 nearby early-type galaxies in the SAURON sample. Identical apertures are used for all quantities, avoiding aperture mismatch. We show that galaxies with purely old stellar populations show well-defined correlations of the integrated FUV-V and FUV-NUV colours with the integrated Mgb and Hbeta absorption linestrength indices, strongest for FUV-NUV. Correlations with the NUV-V colour, Fe5015 index and stellar velocity dispersion are much weaker. These correlations put stringent constraints on the origin of the UV-upturn phenomenon in early-type galaxies, and highlight its dependence on age and metallicity. In particular, despite recent debate, we recover the negative correlation between FUV-V colour and Mg linestrength originally publicised by Burstein et al. (1988), which we refer to as the Burstein relation, suggesting a positive dependence of the UV-upturn on metallicity. We argue that the scatter in the correlations is real, and present mild evidence that a strong UV excess is preferentially present in slow-rotating galaxies. We also demonstrate that most outliers in the correlations are galaxies with current or recent star formation, some at very low levels. We believe that this sensitivity to weak star formation, afforded by the deep and varied data available for the SAURON sample, explains why our results are occasionally at odds with other recent but shallower surveys. This is supported by the analysis of a large, carefully-crafted sample of more distant early-type galaxies from the Sloan Digital Sky Survey (SDSS), more easily comparable with current and future large surveys.



قيم البحث

اقرأ أيضاً

The unexpected rising flux of early-type galaxies at decreasing ultraviolet (UV) wavelengths is a long-standing mystery. One important observational constraint is the correlation between UV-optical colours and Mg2 line strengths found by Burstein et al. (1988). The simplest interpretation of this phenomenon is that the UV strength is related to the Mg line strength. Under this assumption, we expect galaxies with larger Mg gradients to have larger UV colour gradients. By combining UV imaging from GALEX, optical imaging from MDM and SAURON integral-field spectroscopy, we investigate the spatially-resolved relationships between UV colours and stellar population properties of 34 early-type galaxies from the SAURON survey sample. We find that galaxies with old stellar populations show tight correlations between the FUV colours (FUV-V and FUV-NUV) and the Mgb index, H{beta} index and metallicity [Z/H]. The equivalent correlations for the Fe5015 index, {alpha}-enhancement [{alpha}/Fe] and age are present but weaker. We have also derived logarithmic internal radial colour, measured line strength and derived stellar population gradients for each galaxy and again found a strong dependence of the FUV-V and FUV-NUV colour gradients on both the Mg b line strength and the metallicity gradients for galaxies with old stellar populations. In particular, global gradients of Mg b and [Z/H] with respect to the UV colour across galaxies are consistent with their local gradients within galaxies, suggesting that the global correlations also hold locally. From a simple model based on multi-band colour fits of UV upturn and UV-weak galaxies, we have identified a plausible range of parameters that reproduces the observed radial colour profiles. In these models, the centers of elliptical galaxies, where the UV flux is strong, are enhanced in metals by roughly 60% compared to UV-weak regions.
We combine SAURON integral field data of a representative sample of local early-type, red sequence galaxies with Spitzer/IRAC imaging in order to investigate the presence of trace star formation in these systems. With the Spitzer data, we identify ga laxies hosting low-level star formation, as traced by PAH emission, with measured star formation rates that compare well to those estimated from other tracers. This star formation proceeds according to established scaling relations with molecular gas content, in surface density regimes characteristic of disk galaxies and circumnuclear starbursts. We find that star formation in early-type galaxies happens exclusively in fast-rotating systems and occurs in two distinct modes. In the first, star formation is a diffuse process, corresponding to widespread young stellar populations and high molecular gas content. The equal presence of co- and counter-rotating components in these systems strongly implies an external origin for the star-forming gas, and we argue that these star formation events may be the final stages of (mostly minor) mergers that build up the bulges of red sequence lenticulars. In the second mode of star formation, the process is concentrated into well-defined disk or ring morphologies, outside of which the host galaxies exhibit uniformly evolved stellar populations. This implies that these star formation events represent rejuvenations within previously quiescent stellar systems. Evidence for earlier star formation events similar to these in all fast rotating early-type galaxies suggests that this mode of star formation may be common to all such galaxies, with a duty cycle of roughly 1/10, and likely contributes to the embedded, co-rotating inner stellar disks ubiquitous in this population.
We present the Combined Array for Research in Millimeter Astronomy (CARMA) ATLAS3D molecular gas imaging survey, a systematic study of the distribution and kinematics of molecular gas in CO-rich early-type galaxies. Our full sample of 40 galaxies (30 newly mapped and 10 taken from the literature) is complete to a 12CO(1-0) integrated flux of 18.5 Jy km/s, and it represents the largest, best-studied sample of its type to date. A comparison of the CO distribution of each galaxy to the g-r color image (representing dust) shows that the molecular gas and dust distributions are in good agreement and trace the same underlying interstellar medium. The galaxies exhibit a variety of CO morphologies, including discs (50%), rings (15%), bars+rings (10%), spiral arms (5%), and mildly (12.5%) and strongly (7.5%) disrupted morphologies. There appear to be weak trends between galaxy mass and CO morphology, whereby the most massive galaxies in the sample tend to have molecular gas in a disc morphology. We derive a lower limit to the total accreted molecular gas mass across the sample of 2.48x10^10 Msuns, or approximately 8.3x10^8 Msuns per minor merger within the sample, consistent with minor merger stellar mass ratios.
We investigate the [3.6] - [4.5] Spitzer-IRAC colour behaviour of the early-type galaxies of the SAURON survey, a representative sample of 48 nearby ellipticals and lenticulars. We investigate how this colour, which is unaffected by dust extinction, can be used to constrain the stellar populations in these galaxies. We find a tight relation between the [3.6]-[4.5] colour and effective velocity dispersion, a good mass-indicator in early-type galaxies. Contrary to other colours in the optical and near-infrared, we find that the colours become bluer for larger galaxies. The relations are tighter when using the colour inside r_e, rather than the much smaller r_e/8 aperture, due to the presence of young populations in the central regions. We also obtain strong correlations between the [3.6]-[4.5] colour and 3 strong absorption lines (H beta, Mg b and Fe 5015). Comparing our data with the models of Marigo et al., which show that more metal rich galaxies are bluer, we can explain our results in a way consistent with results from the optical, by stating that larger galaxies are more metal rich. The blueing is caused by a strong CO absorption band, whose line strength increases strongly with decreasing temperature and which covers a considerable fraction of the 4.5 micron filter. In galaxies that contain a compact radio source, the [3.6]-[4.5] colour is generally slightly redder than in the other galaxies, indicating small amounts of either hot dust, non-thermal emission, or young stars near the center. We find that the large majority of the galaxies show redder colours with increasing radius. abbreviated...
We have carried out a survey for 12CO J=1-0 and J=2-1 emission in the 260 early-type galaxies of the volume-limited Atlas3D sample, with the goal of connecting their star formation and assembly histories to their cold gas content. This is the largest volume-limited CO survey of its kind and is the first to include many Virgo Cluster members. Sample members are dynamically hot galaxies with a median stellar mass 3times 10^{10} Msun; they are selected by morphology rather than colour, and the bulk of them lie on the red sequence. The overall CO detection rate is 56/259 = 0.22 error 0.03, with no dependence on K luminosity and only a modest dependence on dynamical mass. There are a dozen CO detections among the Virgo Cluster members; statistical analysis of their H_2 mass distributions and their dynamical status within the cluster shows that the clusters influence on their molecular masses is subtle at best, even though (unlike spirals) they seem to be virialized within the cluster. We suggest that the cluster members have retained their molecular gas through several Gyr residences in the cluster. There are also a few extremely CO-rich early-type galaxies with H_2 masses >= 10^9 Msun, and these are in low density environments. We do find a significant trend between molecular content and the stellar specific angular momentum. The galaxies of low angular momentum also have low CO detection rates, suggesting that their formation processes were more effective at destroying molecular gas or preventing its re-accretion. We speculate on the implications of these data for the formation of various sub-classes of early-type galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا