ﻻ يوجد ملخص باللغة العربية
We report isotopic and microstructural data on five presolar hibonite grains identified in an acid residue of the Krymka LL3.1 ordinary chondrite. Isotopic measurements by secondary ion mass spectrometry (SIMS) verified a presolar circumstellar origin for the grains. Transmission electron microscopy (TEM) examination of the crystal structure and chemistry of the grains was enabled by in situ sectioning and lift-out with a focused-ion-beam scanning-electron microscope. Comparisons of isotopic compositions with models indicate that four of the five grains formed in low-mass stars that evolved through the red-giant/asymptotic-giant branches, whereas one grain formed in the ejecta of a Type II supernova. Selected-area electron-diffraction patterns show that all grains are single crystals of hibonite. Some grains contain stacking faults and small spreads in orientation that can be attributed to a combination of growth defects and mechanical processing by grain-grain collisions. The similar structure of the supernova grain to those from RGB/AGB stars indicates a similarity in the formation conditions. Radiation damage, if present, occurs below our detection limit. Of the five grains we studied, only one has the pure hibonite composition of CaAl12O19. All others contain minor amounts of Mg, Si, Ti, and Fe. The microstructural data are generally consistent with theoretical predictions, which constrain the circumstellar condensation temperature to a range of 1480 K to 1743 K, assuming a corresponding total gas pressure between 1 x 10-3 and 1 x 10-6 atm. The TEM data were used to develop a calibration for SIMS determination of Ti contents in oxide grains. Grains with extreme 18O depletions, indicating deep mixing has occurred in their parent AGB stars, are slightly Ti-enriched compared to grains from stars without deep mixing, most likely reflecting differences in grain condensation conditions.
For quantitative electron microscopy high precision position information is necessary so that besides an adequate resolution and sufficiently strong contrast of atoms, small width of peaks which represent atoms in structural images is needed. Size of
Alnico is a prime example of a finely tuned nanostructure whose magnetic properties are intimately connected to magnetic annealing (MA) during spinodal transformation and subsequent lower temperature annealing (draw) cycles. Using a combination of tr
In the quest for dynamic multimodal probing of a materials structure and functionality, it is critical to be able to quantify the chemical state on the atomic and nanoscale using element specific electronic and structurally sensitive tools such as el
It has been implicitly assumed that ices on grains in molecular clouds and proto planetary disks are formed by homogeneous layers regardless of their composition or crystallinity. To verify this assumption, we observed the H2O deposition onto refract
Single atoms can be considered as basic objects for electron microscopy to test the microscope performance and basic concepts for modeling of image contrast. In this work high-resolution transmission electron microscopy was applied to image single pl