ﻻ يوجد ملخص باللغة العربية
The effects of K and Co substitutions and quasi-hydrostatic applied pressure (P<9 GPa) in the local atomic structure of BaFe2As2, Ba(Fe{0.937}Co{0.063})2As2 and Ba{0.85}K{0.15}Fe2As2 superconductors were investigated by extended x-ray absorption fine structure (EXAFS) measurements in the As K absorption edge. The As-Fe bond length is found to be slightly reduced (<~ 0.01 Angstroms) by both Co and K substitutions, without any observable increment in the corresponding Debye Waller factor. Also, this bond is shown to be compressible (k = 3.3(3)x10^{-3} GPa^{-1}). The observed contractions of As-Fe bond under pressure and chemical substitutions are likely related with a reduction of the local Fe magnetic moments, and should be an important tuning parameter in the phase diagrams of the Fe-based superconductors.
The ab-plane resistivity of Ba(Fe1-xRux)2As2 (x = 0.00, 0.09, 0.16, 0.21, and 0.28) was studied under nearly hydrostatic pressures, up to 7.4 GPa, in order to explore the T-P phase diagram and to compare the combined effects of iso-electronic Ru subs
The Fe K X-ray absorption near edge structure (XANES) of BaFe2-xCoxAs2 superconductors was investigated. No appreciable alteration in shape or energy position of this edge was observed with Co substitution. This result provides experimental support t
We report resistivity and Hall effect results on Ba(Fe1-xNix)2As2 and compare them with those in Ba(Fe1-xCox)2As2. The Hall number RH is negative for all x values from 0.01 to 0.14, which indicates that electron carriers dominate the transport both i
Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba1-xTlxFe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-a
A large number of compounds which contain BiS$_{2}$ layers exhibit enhanced superconductivity upon electron doping. Much interest and research effort has been focused on BiS$_{2}$-based compounds which provide new opportunities for exploring the natu