ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamically ordered energy function for Morse-Smale diffeomorphisms on 3-manifolds

179   0   0.0 ( 0 )
 نشر من قبل Francois Laudenbach
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This note deals with arbitrary Morse-Smale diffeomorphisms in dimension 3 and extends ideas from cite{GrLaPo}, cite{GrLaPo1}, where gradient-like case was considered. We introduce a kind of Morse-Lyapunov function, called dynamically ordered, which fits well dynamics of diffeomorphism. The paper is devoted to finding conditions to the existence of such an energy function, that is, a function whose set of critical points coincides with the non-wandering set of the considered diffeomorphism. We show that the necessary and sufficient conditions to the existence of a dynamically ordered energy function reduces to the type of embedding of one-dimensional attractors and repellers of a given Morse-Smale diffeomorphism on a closed 3-manifold.



قيم البحث

اقرأ أيضاً

The paper is devoted to finding conditions to the existence of a self-indexing energy function for Morse-Smale diffeomorphisms on a 3-manifold. These conditions involve how the stable and unstable manifolds of saddle points are embedded in the ambien t manifold. We also show that the existence of a self-indexing energy function is equivalent to the existence of a Heegaard splitting of a special type with respect to the considered diffeomorphism.
Given a compact smooth manifold $M$ with non-empty boundary and a Morse function, a pseudo-gradient Morse-Smale vector field adapted to the boundary allows one to build a Morse complex whose homology is isomorphic to the (absolute or relative to the boundary) homology of $M$ with integer coefficients. Our approach simplifies other methods which have been discussed in more specific geometric settings.
227 - Shigenori Matsumoto 2013
Denote by $DC(M)_0$ the identity component of the group of compactly supported $C^infty$ diffeomorphisms of a connected $C^infty$ manifold $M$, and by $HR$ the group of the homeomorphisms of $R$. We show that if $M$ is a closed manifold which fibers over $S^m$ ($mgeq 2$), then any homomorphism from $DC(M)_0$ to $HR$ is trivial.
81 - Tadayuki Watanabe 2016
In this paper, it is explained that a topological invariant for 3-manifold $M$ with $b_1(M)=1$ can be constructed by applying Fukayas Morse homotopy theoretic approach for Chern--Simons perturbation theory to a local system on $M$ of rational functio ns associated to the free abelian covering of $M$. Our invariant takes values in Garoufalidis--Rozanskys space of Jacobi diagrams whose edges are colored by rational functions. It is expected that our invariant gives a lot of nontrivial finite type invariants of 3-manifolds.
178 - Tadayuki Watanabe 2014
For a 3-manifold $M$ with $b_1(M)=1$ fibered over $S^1$ and the fiberwise gradient $xi$ of a fiberwise Morse function on $M$, we introduce the notion of amidakuji-like path (AL-path) on $M$. An AL-path is a piecewise smooth path on $M$ consisting of edges each of which is either a part of a critical locus of $xi$ or a flow line of $-xi$. Counting closed AL-paths with signs gives the Lefschetz zeta function of $M$. The moduli space of AL-paths on $M$ gives explicitly Lescops equivariant propagator, which can be used to define $mathbb{Z}$-equivariant version of Chern--Simons perturbation theory for $M$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا