ترغب بنشر مسار تعليمي؟ اضغط هنا

Global matrix factorizations

341   0   0.0 ( 0 )
 نشر من قبل Kevin H. Lin
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study matrix factorization and curved module categories for Landau-Ginzburg models (X,W) with X a smooth variety, extending parts of the work of Dyckerhoff. Following Positselski, we equip these categories with model category structures. Using results of Rouquier and Orlov, we identify compact generators. Via Toens derived Morita theory, we identify Hochschild cohomology with derived endomorphisms of the diagonal curved module; we compute the latter and get the expected result. Finally, we show that our categories are smooth, proper when the singular locus of W is proper, and Calabi-Yau when the total space X is Calabi-Yau.



قيم البحث

اقرأ أيضاً

We study matrix factorizations of locally free coherent sheaves on a scheme. For a scheme that is projective over an affine scheme, we show that homomorphisms in the homotopy category of matrix factorizations may be computed as the hypercohomology of a certain mapping complex. Using this explicit description, we give another proof of Orlovs theorem that there is a fully faithful embedding of the homotopy category of matrix factorizations into the singularity category of the corresponding zero subscheme. We also give a complete description of the image of this functor.
161 - Mark E. Walker 2014
We develop a theory of ``ad hoc Chern characters for twisted matrix factorizations associated to a scheme $X$, a line bundle ${mathcal L}$, and a regular global section $W in Gamma(X, {mathcal L})$. As an application, we establish the vanishing, in certain cases, of $h_c^R(M,N)$, the higher Herbrand difference, and, $eta_c^R(M,N)$, the higher codimensional analogue of Hochsters theta pairing, where $R$ is a complete intersection of codimension $c$ with isolated singularities and $M$ and $N$ are finitely generated $R$-modules. Specifically, we prove such vanishing if $R = Q/(f_1, dots, f_c)$ has only isolated singularities, $Q$ is a smooth $k$-algebra, $k$ is a field of characteristic $0$, the $f_i$s form a regular sequence, and $c geq 2$.
We observe that there is an equivalence between the singularity category of an affine complete intersection and the homotopy category of matrix factorizations over a related scheme. This relies in part on a theorem of Orlov. Using this equivalence, w e give a geometric construction of the ring of cohomology operators, and a generalization of the theory of support varieties, which we call stable support sets. We settle a question of Avramov about which stable support sets can arise for a given complete intersection ring. We also use the equivalence to construct a projective resolution of a module over a complete intersection ring from a matrix factorization, generalizing the well-known result in the hypersurface case.
Placing D3-branes at conical Calabi-Yau threefold singularities produces many AdS$_5$/CFT$_4$ duals. Recent progress in differential geometry has produced a technique (called K-stability) to recognize which singularities admit conical Calabi-Yau metr ics. On the other hand, the algebraic technique of non-commutative crepant resolutions, involving matrix factorizations, has been developed to associate a quiver to a singularity. In this paper, we put together these ideas to produce new AdS$_5$/CFT$_4$ duals, with special emphasis on non-toric singularities.
189 - Anton Dzhamay 2013
We study relations between the eigenvectors of rational matrix functions on the Riemann sphere. Our main result is that for a subclass of functions that are products of two elementary blocks it is possible to represent these relations in a combinator ial-geometric way using a diagram of a cube. In this representation, vertices of the cube represent eigenvectors, edges are labeled by differences of locations of zeroes and poles of the determinant of our matrix function, and each face corresponds to a particular choice of a coordinate system on the space of such functions. Moreover, for each face this labeling encodes, in a neat and efficient way, a generating function for the expressions of the remaining four eigenvectors that label the opposing face of the cube in terms of the coordinates represented by the chosen face. The main motivation behind this work is that when our matrix is a Lax matrix of a discrete integrable system, such generating functions can be interpreted as Lagrangians of the system, and a choice of a particular face corresponds to a choice of the direction of the motion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا