ترغب بنشر مسار تعليمي؟ اضغط هنا

Secure gated detection scheme for quantum cryptography

132   0   0.0 ( 0 )
 نشر من قبل Lars Lydersen
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several attacks have been proposed on quantum key distribution systems with gated single-photon detectors. The attacks involve triggering the detectors outside the center of the detector gate, and/or using bright illumination to exploit classical photodiode mode of the detectors. Hence a secure detection scheme requires two features: The detection events must take place in the middle of the gate, and the detector must be single-photon sensitive. Here we present a technique called bit-mapped gating, which is an elegant way to force the detections in the middle of the detector gate by coupling detection time and quantum bit error rate. We also discuss how to guarantee single-photon sensitivity by directly measuring detector parameters. Bit-mapped gating also provides a simple way to measure the detector blinding parameter in security proofs for quantum key distribution systems with detector efficiency mismatch, which up until now has remained a theoretical, unmeasurable quantity. Thus if single-photon sensitivity can be guaranteed within the gates, a detection scheme with bit-mapped gating satisfies the assumptions of the current security proofs.



قيم البحث

اقرأ أيضاً

It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulat ing voltages in the circuit [L. Lydersen et al., Nat. Photonics DOI:10.1038/nphoton.2010.214]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.
Recent results of Kaplan et al., building on previous work by Kuwakado and Morii, have shown that a wide variety of classically-secure symmetric-key cryptosystems can be completely broken by quantum chosen-plaintext attacks (qCPA). In such an attack, the quantum adversary has the ability to query the cryptographic functionality in superposition. The vulnerable cryptosystems include the Even-Mansour block cipher, the three-round Feistel network, the Encrypted-CBC-MAC, and many others. In this work, we study simple algebraic adaptations of such schemes that replace $(mathbb Z/2)^n$ addition with operations over alternate finite groups--such as $mathbb Z/{2^n}$--and provide evidence that these adaptations are qCPA-secure. These adaptations furthermore retain the classical security properties (and basic structural features) enjoyed by the original schemes. We establish security by treating the (quantum) hardness of the well-studied Hidden Shift problem as a basic cryptographic assumption. We observe that this problem has a number of attractive features in this cryptographic context, including random self-reducibility, hardness amplification, and--in many cases of interest--a reduction from the search version to the decisional version. We then establish, under this assumption, the qCPA-security of several such Hidden Shift adaptations of symmetric-key constructions. We show that a Hidden Shift version of the Even-Mansour block cipher yields a quantum-secure pseudorandom function, and that a Hidden Shift version of the Encrypted CBC-MAC yields a collision-resistant hash function. Finally, we observe that such adaptations frustrate the direct Simons algorithm-based attacks in more general circumstances, e.g., Feistel networks and slide attacks.
We report an experimental quantum key distribution that utilizes balanced homodyne detection, instead of photon counting, to detect weak pulses of coherent light. Although our scheme inherently has a finite error rate, it allows high-efficiency detec tion and quantum state measurement of the transmitted light using only conventional devices at room temperature. When the average photon number was 0.1, an error rate of 0.08 and effective quantum efficiency of 0.76 were obtained.
329 - Qin Li , Chengqing Li , Chunhui Wu 2020
In this paper, an efficient arbitrated quantum signature scheme is proposed by combining quantum cryptographic techniques and some ideas in classical cryptography. In the presented scheme, the signatory and the receiver can share a long-term secret k ey with the arbitrator by utilizing the key together with a random number. While in previous quantum signature schemes, the key shared between the signatory and the arbitrator or between the receiver and the arbitrator could be used only once, and thus each time when a signatory needs to sign, the signatory and the receiver have to obtain a new key shared with the arbitrator through a quantum key distribution protocol. Detailed theoretical analysis shows that the proposed scheme is efficient and provably secure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا