ﻻ يوجد ملخص باللغة العربية
We formulate a novel approach to decoherence based on neglecting observationally inaccessible correlators. We apply our formalism to a renormalised interacting quantum field theoretical model. Using out-of-equilibrium field theory techniques we show that the Gaussian von Neumann entropy for a pure quantum state increases to the interacting thermal entropy. This quantifies decoherence and thus measures how classical our pure state has become. The decoherence rate is equal to the single particle decay rate in our model. We also compare our approach to existing approaches to decoherence in a simple quantum mechanical model. We show that the entropy following from the perturbative master equation suffers from physically unacceptable secular growth.
We study decoherence in a simple quantum mechanical model using two approaches. Firstly, we follow the conventional approach to decoherence where one is interested in solving the reduced density matrix from the perturbative master equation. Secondly,
An entanglement measure for a bipartite quantum system is a state functional that vanishes on separable states and that does not increase under separable (local) operations. It is well-known that for pure states, essentially all entanglement measures
Erik Verlindes theory of entropic gravity [arXiv:1001.0785], postulating that gravity is not a fundamental force but rather emerges thermodynamically, has garnered much attention as a possible resolution to the quantum gravity problem. Some have rule
The symmetry of quantum theory under time reversal has long been a subject of controversy because the transition probabilities given by Borns rule do not apply backward in time. Here, we resolve this problem within a rigorous operational probabilisti
A historically important but little known debate regarding the necessity and meaning of macroscopic superpositions, in particular those containing different gravitational fields, is discussed from a modern perspective.