ترغب بنشر مسار تعليمي؟ اضغط هنا

Exit problems for oscillating compound Poisson process

111   0   0.0 ( 0 )
 نشر من قبل Tetyana Kadankova
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Tetyana Kadankova




اسأل ChatGPT حول البحث

In this article we determine the Laplace transforms of the main boundary functionals of the oscillating compound Poisson process. These are the first passage time of the level, the joint distribution of the first exit time from the interval and the value of the overshoot through the boundary. Under certain conditions we establish the asymptotic behaviour of the mentioned functionals.



قيم البحث

اقرأ أيضاً

In this paper we develop the theory of the so-called $mathbf{W}$ and $mathbf{Z}$ scale matrices for (upwards skip-free) discrete-time and discrete-space Markov additive processes, along the lines of the analogous theory for Markov additive processes in continuous-time. In particular, we provide their probabilistic construction, identify the form of the generating function of $mathbf{W}$ and its connection with the occupation mass formula, which provides the tools for deriving semi-explicit expressions for corresponding exit problems for the upward-skip free process and its reflections, in terms the scale matrices.
The term moderate deviations is often used in the literature to mean a class of large deviation principles that, in some sense, fill the gap between a convergence in probability to zero (governed by a large deviation principle) and a weak convergence to a centered Normal distribution. We talk about non-central moderate deviations when the weak convergence is towards a non-Gaussian distribution. In this paper we study non-central moderate deviations for compound fractional Poisson processes with light-tailed jumps.
In this paper we develop a metastability theory for a class of stochastic reaction-diffusion equations exposed to small multiplicative noise. We consider the case where the unperturbed reaction-diffusion equation features multiple asymptotically stab le equilibria. When the system is exposed to small stochastic perturbations, it is likely to stay near one equilibrium for a long period of time, but will eventually transition to the neighborhood of another equilibrium. We are interested in studying the exit time from the full domain of attraction (in a function space) surrounding an equilibrium and therefore do not assume that the domain of attraction features uniform attraction to the equilibrium. This means that the boundary of the domain of attraction is allowed to contain saddles and limit cycles. Our method of proof is purely infinite dimensional, i.e., we do not go through finite dimensional approximations. In addition, we address the multiplicative noise case and we do not impose gradient type of assumptions on the nonlinearity. We prove large deviations logarithmic asymptotics for the exit time and for the exit shape, also characterizing the most probable set of shapes of solutions at the time of exit from the domain of attraction.
We analyse an additive-increase and multiplicative-decrease (aka growth-collapse) process that grows linearly in time and that experiences downward jumps at Poisson epochs that are (deterministically) proportional to its present position. This proces s is used for example in modelling of Transmission Control Protocol (TCP) and can be viewed as a particular example of the so-called shot noise model, a basic tool in modeling earthquakes, avalanches and neuron firings. For this process, and also for its reflect
118 - N. Leonenko , E. Scalas , M. Trinh 2016
We introduce a non-homogeneous fractional Poisson process by replacing the time variable in the fractional Poisson process of renewal type with an appropriate function of time. We characterize the resulting process by deriving its non-local governing equation. We further compute the first and second moments of the process. Eventually, we derive the distribution of arrival times. Constant reference is made to previous known results in the homogeneous case and to how they can be derived from the specialization of the non-homogeneous process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا