ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromagnetically induced Talbot effect

178   0   0.0 ( 0 )
 نشر من قبل Jianming Wen
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By modulating transmission function of a weak probe field via a strong control standing wave, an electromagnetically induced grating can be created in the probe channel. Such a nonmaterial grating may lead to self-imaging of ultra-cold atoms or molecules in the Fresnel near-field regime. This work may offer a nondestructive and lensless way to image ultra-cold atoms or molecules.



قيم البحث

اقرأ أيضاً

In this study, we report on the fractional Talbot effect of nonparaxial self-accelerating beams in a multilevel electromagnetically induced transparency (EIT) atomic configuration, which, to the best of our knowledge, is the first study on this subje ct. The Talbot effect originates from superposed eigenmodes of the Helmholtz equation and forms in the EIT window in the presence of both linear and cubic susceptibilities. The Talbot effect can be realized by appropriately selecting the coefficients of the beam components. Our results indicate that the larger the radial ifference between beam components, the stronger the interference between them, the smaller the Talbot angle is. The results of this study can be useful when studying optical imaging, optical measurements, and optical computing.
We report a simple, novel sub-diffraction method, i.e. diffraction interference induced super-focusing in second-harmonic (SH) Talbot effect, to achieve focusing size of less than {lambda}_pump/8 without involving evanescent waves or sub-wavelength a pertures. By tailoring point spread functions with Fresnel diffraction interference, we observe periodic SH sub-diffracted spots over a hundred of micrometers away from the sample. Our demonstration is the first experimental realization of the proposal by Toraldo Di Francia pioneered 60 years ago for super-resolution imaging.
A freely propagating optical field having a periodic transverse spatial profile undergoes periodic axial revivals - a well-known phenomenon known as the Talbot effect or self-imaging. We show here that introducing tight spatio-temporal spectral corre lations into an ultrafast pulsed optical field with a periodic transverse spatial profile eliminates all axial dynamics in physical space while revealing a novel space-time Talbot effect that can be observed only when carrying out time-resolved measurements. Indeed, time-diffraction is observed whereupon the temporal profile of the field envelope at a fixed axial plane corresponds to a segment of the spatial propagation profile of a monochromatic field sharing the initial spatial profile and observed at the same axial plane. Time-averaging, which is intrinsic to observing the intensity, altogether veils this effect.
We demonstrate the fractional Talbot effect of nonpraxial accelerating beams, theoretically and numerically. It is based on the interference of nonparaxial accelerating solutions of the Helmholtz equation in two dimensions. The effect originates from the interfering lobes of a superposition of the solutions that accelerate along concentric semicircular trajectories with different radii. Talbot images form along certain central angles, which are referred to as the Talbot angles. The fractional nonparaxial Talbot effect is obtained by choosing the coefficients of beam components properly. A single nonparaxial accelerating beam possesses duality --- it can be viewed as a Talbot effect of itself with an infinite or zero Talbot angle. These results improve the understanding of nonparaxial accelerating beams and the Talbot effect among them.
Electromagnetically-induced-transparency (EIT) and Autler-Townes splitting (ATS) are two prominent examples of coherent interactions between optical fields and multilevel atoms. They have been observed in various physical systems involving atoms, mol ecules, meta-structures and plasmons. In recent years, there has been an increasing interest in the implementations of all-optical analogues of EIT and ATS via the interacting resonant modes of one or more optical microcavities. Despite the differences in their underlying physics, both EIT and ATS are quantified by the appearance of a transparency window in the absorption or transmission spectrum, which often leads to a confusion about its origin. While in EIT the transparency window is a result of Fano interference among different transition pathways, in ATS it is the result of strong field-driven interactions leading to the splitting of energy levels. Being able to tell objectively whether a transparency window observed in the spectrum is due to EIT or ATS is crucial for clarifying the physics involved and for practical applications. Here we report a systematic study of the pathways leading to EIT, Fano, and ATS, in systems of two coupled whispering-gallery-mode (WGM) microtoroidal resonators. Moreover, we report for the first time the application of the Akaike Information Criterion discerning between all-optical analogues of EIT and ATS, and clarifying the transition between them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا