ﻻ يوجد ملخص باللغة العربية
In large ensembles of identical atoms or spins, the interaction with a mode of the electromagnetic radiation field concentrates in a single superradiant degree of freedom with a collectively enhanced coupling. Given a controllable inhomogeneous broadening, such ensembles may be used for multi-mode storage of quantum states of the radiation field with applications in quantum communication networks and quantum computers. In this paper we analyze how the width and shape of the inhomogeneous broadening influence the collective enhancement and the dynamics of the cavity-ensemble system with focus on the consequences for the ensembles applicability for quantum information processing tasks.
A very promising recent trend in applied quantum physics is to combine the advantageous features of different quantum systems into what is called hybrid quantum technology. One of the key elements in this new field will have to be a quantum memory en
We show experimentally and describe theoretically how a conventional magnetic resonance Hahn echo sequence can lead to a self-stimulated pulse echo train when an inhomogeneously broadened spin ensemble is coupled to a resonator. Effective strong coup
We study the dynamics of a spin ensemble strongly coupled to a single-mode resonator driven by external pulses. When the mean frequency of the spin ensemble is in resonance with the cavity mode, damped Rabi oscillations are found between the spin ens
Ensembles of quantum mechanical spins offer a promising platform for quantum memories, but proper functionality requires accurate control of unavoidable system imperfections. We present an efficient control scheme for a spin ensemble strongly coupled
We study, theoretically and experimentally, electromagnetically induced transparency (EIT) in two different solid-state systems. Unlike many implementations in homogeneously broadened media, these systems exhibit inhomogeneous broadening of their opt