ﻻ يوجد ملخص باللغة العربية
We demonstrate that the critical temperature for valence tautomeric interconversion in Cobalt dioxolene complexes can be significantly changed when a static electric field is applied to the molecule. This is achieved by effectively manipulating the redox potential of the metallic acceptor forming the molecule. Importantly our accurate density functional theory calculations demonstrate that already a field of 0.1 V/nm, achievable in Stark spectroscopy experiments, can produce a change in the critical temperature for the interconversion of 20 K. Our results indicate a new way for switching on and off the magnetism in a magnetic molecule. This offers the unique chance of controlling magnetism at the atomic scale by electrical means.
We present an ab initio molecular dynamics (MD) investigation of the tautomeric equilibrium for aqueous solutions of glycine and acetone at realistic experimental conditions. Metadynamics is used to accelerate proton migration among tautomeric center
The Curie temperature is one of the most fundamental physical properties of ferromagnetic materials and can be described by Weiss molecular field theory with the exchange interaction of neighboring atoms. Recently, the electric-field-induced modulati
We propose and analyze a novel flopping-mode mechanism for electric dipole spin resonance based on the delocalization of a single electron across a double quantum dot confinement potential. Delocalization of the charge maximizes the electronic dipole
The spin-orbit coupling (SOC) can mediate electric-dipole spin resonance (EDSR) in an a.c. electric field. In this letter, the EDSR is essentially understood as an spin precession under an effective a.c. magnetic field induced by the SOC in the refer
The polar covalent bond between a single Au atom terminating the apex of an atomic force microscope tip and a C atom of graphene on SiC(0001) is exposed to an external electric field. For one field orientation the Au-C bond is strong enough to sustai