ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear lattice model and the electronic configuration of the chemical elements

106   0   0.0 ( 0 )
 نشر من قبل Jozsef Garai
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jozsef Garai




اسأل ChatGPT حول البحث

The fundamental organizing principle resulting in the periodic table is the nuclear charge. Arranging the chemical elements in an increasing atomic number order, a symmetry pattern known as the Periodic Table is detectable. The correlation between nuclear charge and the Periodic System of the Chemical Elements (PSCE) indicates that the symmetry emerges from the nucleus. Nuclear symmetry can only exist if the relative positions of the nucleons in the nucleus are invariant. Pauli exclusion principle can also be interpreted as the nucleons should occupy a lattice position. Based on symmetry and other indicatives face centered cubic arrangement have been proposed for the nuclear lattice. A lattice model, representing the protons and the neutrons by equal spheres and arranging them alternately in a face centered cubic structure forming a double tetrahedron, is able to reproduce all of the properties of the nucleus including the quantum numbers and the periodicity of the elements. Based on the geometry of the nuclear structure it is shown that when a new layer of the nuclear structure starts then the distance between the first proton in the new layer and the charge center of the nucleus is smaller than the distance of the proton, which completed the preceding layer. Thus a new valence electron shell should start to develop when the nuclear structure is expanded. The expansion of the double tetrahedron FCC nuclear lattice model offers a feasible physical explanation how the nucleus affects the electronic configuration of the chemical elements depicted by the periodic table.



قيم البحث

اقرأ أيضاً

Over the last decade, numerical solutions of Quantum Chromodynamics (QCD) using the technique of lattice QCD have developed to a point where they are beginning to connect fundamental aspects of nuclear physics to the underlying degrees of freedom of the Standard Model. In this review, the progress of lattice QCD studies of nuclear matrix elements of electroweak currents and beyond-Standard-Model operators is summarized, and connections with effective field theories and nuclear models are outlined. Lattice QCD calculations of nuclear matrix elements can provide guidance for low-energy nuclear reactions in astrophysics, dark matter direct detection experiments, and experimental searches for violations of the symmetries of the Standard Model, including searches for additional CP violation in the hadronic and leptonic sectors, baryon-number violation, and lepton-number or flavor violation. Similarly, important inputs to neutrino experiments seeking to determine the neutrino-mass hierarchy and oscillation parameters, as well as other electroweak and beyond-Standard-Model processes can be determined. The phenomenological implications of existing studies of electroweak and beyond-Standard-Model matrix elements in light nuclear systems are discussed, and future prospects for the field toward precision studies of these matrix elements are outlined.
107 - Gregory Beylkin 2018
A modification of the standard periodic table of the elements reveals $4n^{2}$ periods, where $n=2,3,dots$. The new arrangement places hydrogen with halogens and keeps the rare-earth elements in the table proper (without separating them as they are i n the standard table). Effectively, periods in the modified table are defined by the halogens rather than by the noble gases. The graph of ionization energy of the elements is presented for comparison of periods in the standard and the modified tables.
Within the lowest-order relativistic approximation ($sim v^2/c^2$) and to first order in $m_e/M$, the tensorial form of the relativistic corrections of the nuclear recoil Hamiltonian is derived, opening interesting perspectives for calculating isotop e shifts in the multiconfiguration Dirac-Hartree-Fock framework. Their calculation is illustrated for selected Li-, B- and C-like ions. The present work underlines the fact that the relativistic corrections to the nuclear recoil are definitively necessary for getting reliable isotope shift values.
60 - Giona Casiraghi 2018
We provide a novel family of generative block-models for random graphs that naturally incorporates degree distributions: the block-constrained configuration model. Block-constrained configuration models build on the generalised hypergeometric ensembl e of random graphs and extend the well-known configuration model by enforcing block-constraints on the edge generation process. The resulting models are analytically tractable and practical to fit even to large networks. These models provide a new, flexible tool for the study of community structure and for network science in general, where modelling networks with heterogeneous degree distributions is of central importance.
We propose a new class of materials, which can be viewed as graphene derivatives involving Group IA or Group VIIA elements, forming what we refer to as graphXene. We show that in several cases large band gaps can be found to open up, whereas in other cases a semimetallic behavior is found. Formation energies indicate that under ambient conditions, sp$^3$ and mixed sp$^2$/sp$^3$ systems will form. The results presented allow us to propose that by careful tuning of the relative concentration of the adsorbed atoms, it should be possible to tune the band gap of graphXene to take any value between 0 and 6.4 eV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا