ﻻ يوجد ملخص باللغة العربية
In this paper we define intersection and union type assignment for Parigots calculus lambda-mu. We show that this notion is complete (i.e. closed under subject-expansion), and show also that it is sound (i.e. closed under subject-reduction). This implies that this notion of intersection-union type assignment is suitable to define a semantics.
We provide a characterisation of strongly normalising terms of the lambda-mu-calculus by means of a type system that uses intersection and product types. The presence of the latter and a restricted use of the type omega enable us to represent the par
We study the lambda-mu-calculus, extended with explicit substitution, and define a compositional output-based interpretation into a variant of the pi-calculus with pairing that preserves single-step explicit head reduction with respect to weak bisimi
We view channels as the main form of resources in a message-passing programming paradigm. These channels need to be carefully managed in settings where resources are scarce. To study this problem, we extend the pi-calculus with primitives for channel
Computing reachability probabilities is at the heart of probabilistic model checking. All model checkers compute these probabilities in an iterative fashion using value iteration. This technique approximates a fixed point from below by determining re
We introduce two extensions of the $lambda$-calculus with a probabilistic choice operator, $Lambda_oplus^{cbv}$ and $Lambda_oplus^{cbn}$, modeling respectively call-by-value and call-by-name probabilistic computation. We prove that both enjoys conflu