ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Criticality without Tuning in the Mixed Valence Compound beta-YbAlB4

146   0   0.0 ( 0 )
 نشر من قبل Yosuke Matsumoto
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fermi liquid theory, the standard theory of metals, has been challenged by a number of observations of anomalous metallic behavior found in the vicinity of a quantum phase transition. The breakdown of the Fermi liquid is accomplished by fine-tuning the material to a quantum critical point using a control parameter such as the magnetic field, pressure, or chemical composition. Our high precision magnetization measurements of the ultrapure f-electron based superconductor {beta}-YbAlB4 demonstrate a scaling of its free energy indicative of zero-field quantum criticality without tuning in a metal. The breakdown of Fermi-liquid behavior takes place in a mixed-valence state, in sharp contrast with other known examples of quantum critical f-electron systems that are magnetic Kondo lattice systems with integral valence.



قيم البحث

اقرأ أيضاً

We present the high-precision magnetization data of the valence fluctuating heavy fermion superconductor $beta$-YbAlB$_4$ in a wide temperature range from 0.02 K to 320 K spanning four orders of magnitude. We made detailed analyses of the $T/B$ scali ng of the magnetization, and firmly confirmed the unconventional zero-field quantum criticality (QC) without tuning. We examined other possible scaling relationship such as $T/(B-B_c)^{delta}$ scaling, and confirmed that $delta = 1$ provides the best quality of the fit with an upper bound on the critical magnetic field $vert B_c vert <0.2$~mT. We further discuss the heavy Fermi-liquid component of the magnetization after subtracting the QC component estimated based on the $T/B$ scaling. The temperature dependence of the heavy Fermi-liquid component is found very similar to the magnetization of the polymorph $alpha$-YbAlB$_4$. In addition, the heavy Fermi-liquid component is suppressed in the magnetic field above $sim$ 5 T as in $alpha$-YbAlB$_4$. This was also confirmed by the magnetization measurements up to $sim 50$ T for both $alpha$- and $beta$-YbAlB$_4$. Interestingly, the detailed analyses revealed that the only a part of $f$ electrons participates in the zero-field QC and the heavy fermion behavior. We also present a temperature - magnetic field phase diagram of ybal to illustrate how the characteristic temperature and field scales evolves near the QC.
Here we provide the first clear evidence of Fermi-liquid breakdown in an intermediate valence system. We employ high precision magnetization measurements of the valence fluctuating superconductor beta-YbAlB4 to probe the quantum critical free energy down to temperatures far below the characteristic energy scale of the valence fluctuations. The observed T/B scaling in the magnetization over three decades not only indicates unconventional quantum criticality, but places an upper bound on the critical magnetic field |B_c| < 0.2 mT, a value comparable with the Earths magnetic field and six orders of magnitude smaller than the valence fluctuation scale. This tiny value of the upper bound on B_c, well inside the superconducting dome, raises the fascinating possibility that valence fluctuating beta-YbAlB4 is intrinsically quantum critical, without tuning the magnetic field, pressure, or composition: the first known example of such a phenomenon in a metal.
The low-temperature electron spin resonance (ESR) spectra and the static magnetization data obtained for the stoichiometric single crystals of $beta$-Na$_{0.33}$V$_2$O$_5$ indicate that this quasi-one-dimensional mixed valence (V4+/V5+) compound demo nstrates at $T_N=22$ K the phase transition into the canted antiferromagnetically ordered state. The spontaneous magnetization of $3.4times 10^{-3}$ $mu_B$ per V$^{4+}$ ion was found to be oriented along the two-fold $b$ axis of the monoclinic structure, the vector of antiferromagnetism is aligned with the $a$ axis and the Dzyaloshinsky vector is parallel to the $c$-axis. The experimental data were successfully described in the frame of the macroscopic spin dynamics and the following values for the macroscopic parameters of the spin system were obtained: the Dzyaloshinsky field $H_D=6$ kOe, the energy gaps of two branches of the spin wave spectrum $Delta_1=48$ GHz and $Delta_2=24$ GHz.
Electronic structures of the quantum critical superconductor beta-YbAlB4 and its polymorph alpha-YbAlB4 are investigated by using bulk-sensitive hard x-ray photoemission spectroscopy. From the Yb 3d core level spectra, the values of the Yb valence ar e estimated to be ~2.73 and ~2.75 for alpha- and beta-YbAlB4, respectively, thus providing clear evidence for valence fluctuations. The valence band spectra of these compounds also show Yb2+ peaks at the Fermi level. These observations establish an unambiguous case of a strong mixed valence at quantum criticality for the first time among heavy fermion systems, calling for a novel scheme for a quantum critical model beyond the conventional Doniach picture in beta-YbAlB4.
The effect of pressure on the unique electronic state of the antiferromagnetic (AF) compound EuCu2Ge2 has been measured in a wide temperature range from 10 mK to 300 K by electrical resistivity measurements up to 10 GPa. The Neel temperature of TN = 15 K at ambient pressure increases monotonically with increasing pressure and becomes a maximum of TN = 27 K at 6.2 GPa but suddenly drops to zero at Pc = 6.5 GPa, suggesting the quantum critical point (QCP) of the valence transition of Eu from a nearly divalent state to that with trivalent weight. The rhomag0 and A values obtained from the low-temperature electrical resistivity based on the Fermi liquid relation of rhomag = rhomag0 + AT^2 exhibit huge and sharp peaks around Pc. The exponent n obtained from the power law dependence rhomag = rhomag0 + BT^n is clearly less than 1.5 at P = Pc = 6. 5 GPa, which is expected at the AF-QCP. These results indicate that Pc coincides with Pv, corresponding to the quantum criticality of the valence transition pressure Pv. The electronic specific heat coefficient, estimated from the generalized Kadowaki-Woods relation, is about 510 mJ/mol K^2 around Pc, suggesting the formation of a heavy-fermion state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا