ﻻ يوجد ملخص باللغة العربية
The availability of vector magnetogram sequences with sufficient accuracy and cadence to estimate the time derivative of the magnetic field allows us to use Faradays law to find an approximate solution for the electric field in the photosphere, using a Poloidal-Toroidal Decomposition (PTD) of the magnetic field and its partial time derivative. Without additional information, however, the electric field found from this technique is under-determined -- Faradays law provides no information about the electric field that can be derived the gradient of a scalar potential. Here, we show how additional information in the form of line-of-sight Doppler flow measurements, and motions transverse to the line-of-sight determined with ad-hoc methods such as local correlation tracking, can be combined with the PTD solutions to provide much more accurate solutions for the solar electric field, and therefore the Poynting flux of electromagnetic energy in the solar photosphere. Reliable, accurate maps of the Poynting flux are essential for quantitative studies of the buildup of magnetic energy before flares and coronal mass ejections.
Photospheric electric fields, estimated from sequences of vector magnetic field and Doppler measurements, can be used to estimate the flux of magnetic energy (the Poynting flux) into the corona and as time-dependent boundary conditions for dynamic mo
The minimum-energy configuration for the magnetic field above the solar photosphere is curl-free (hence, by Amperes law, also current-free), so can be represented as the gradient of a scalar potential. Since magnetic fields are divergence free, this
Low-mass stars are known to have magnetic fields that are believed to be of dynamo origin. Two complementary techniques are principally used to characterise them. Zeeman-Doppler imaging (ZDI) can determine the geometry of the large-scale magnetic fie
Determining the electric field (E-field) distribution on the Suns photosphere is essential for quantitative studies of how energy flows from the Suns photosphere, through the corona, and into the heliosphere. This E-field also provides valuable input