ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Fermi liquid corrections to the neutrino mean free path in dense quark matter

160   0   0.0 ( 0 )
 نشر من قبل Kausik Pal
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the neutrino mean free path with non-Fermi liquid (NFL) corrections in quark matter from scattering and absorption processes for both degenerate and nondegenerate neutrinos. We show that the mean free path decreases due to the non-Fermi liquid corrections leading to $l_{mean}^{-1}sim[......+ .... C_F^2alpha_s^2ln(m_D/T)^2]$. These reduction results in higher rate of scattering.



قيم البحث

اقرأ أيضاً

Effects of neutrino charge radius and magnetic moment, as well as the medium modifications of the weak and electromagnetic nucleon form factors of the constituents of matter on the neutrino electroweak interaction with dense nuclear matter, are estim ated. A relativistic mean-field and quark-meson coupling models are adopted for the in-medium effective nucleon mass and nucleon form factors. We find that the neutrino scattering cross section increases in the cold nuclear medium when neutrino form factors and the in-medium modifications of the nucleon weak and electromagnetic form factors are simultaneously taken into account relative to that without neutrino form factors. The increase of the cross section results in the decrease of the neutrino mean free path, particularly at larger neutrino magnetic moment and charge radius. The quenching of the neutrino mean free path is estimated to be about 12-58% for the values of $mu_ u = 3 times 10^{-12} mu_B$ and $R_ u = 3.5 times 10^{-5}~textrm{MeV}^{-1}$, obtained from the constraints of the astrophysical observations, compared to that of $mu_ u =0$ and $R_ u =0$. The decrease of the neutrino mean free path is expected to decelerate the cooling of neutron stars. Each contribution of the neutrino form factors to the neutrino mean free path is discussed.
We show how the quasiparticle picture of quarks changes near but above the critical temperature T_c of the color-superconducting phase transition in the heated quark matter. We demonstrate that a non-Fermi liquid behavior of the matter develops drast ically when the diquark coupling constant is increased owing to the coupling of the quark with the pairing soft mode: We clarify that the depression and eventually the appearance of a gap structure in the spectral function as well as the anomalous quark dispersion relation of the quark can be understood in terms of the resonant scattering between the incident quark and a particle near the Fermi surface to make the pairing soft mode.
The temperature dependence of the thermodynamic potential of quantum chromodynamics (QCD), the specific heat, and the quark effective mass are calculated for imbalanced quark matter in the limit of a large number of quark flavors (large-$N_F$), which corresponds to the random phase approximation. Also a generalization of the relativistic Landau effective-mass relation in the imbalanced case is given, which is then applied to this thermodynamic potential.
We calculate relativistic Fermi liquid parameters (RFLPs) for the description of the properties of dense nuclear matter (DNM) using Effective Chiral Model. Analytical expressions of Fermi liquid parameters (FLPs) are presented both for the direct and exchange contributions. We present a comparative study of perturbative calculation with mean field (MF) results. Moreover we go beyond the MF so as to estimate the pionic contribution to the FLPs. Finally, we use these parameters to estimate some of the bulk quantities like incompressibility, sound velocity, symmetry energy etc. for DNM interacting via exchange of $sigma$, $omega$ and $pi$ meson. In addition, we also calculate the energy densities and the binding energy curve for the nuclear matter. Results for the latter have been found to be consistent with two loop calculations reported recently within the same model.
We simulate neutrino-antineutrino oscillations caused by strong magnetic fields in dense matter. With the strong magnetic fields and large neutrino magnetic moments, Majorana neutrinos can reach flavor equilibrium. We find that the flavor equilibrati on of neutrino-antineutrino oscillations is sensitive to the values of the baryon density and the electron fraction inside the matter. The neutrino-antineutrino oscillations are suppressed in the case of the large baryon density in neutron (proton)-rich matter. On the other hand, the flavor equilibration occurs when the electron fraction is close to $0.5$ even in the large baryon density. From the simulations, we propose a necessary condition for the equilibration of neutrino-antineutrino oscillations in dense matter. We also study whether such necessary condition is satisfied near the proto-neutron star by using results of neutrino hydrodynamic simulations of core-collapse supernovae. In our explosion model, the flavor equilibration would be possible if the magnetic field on the surface of the proto-neutron star is larger than $10^{14}$ G which is the typical value of the magnetic fields of magnetars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا