In the propagation of optical pulses through dispersive media, the frequency degree of freedom acts as an effective decohering environment on the polarization state of the pulse. Here we discuss the application of open-loop dynamical-decoupling techniques for suppressing such a polarization decoherence in one-way communication channels. We describe in detail the experimental proof of principle of the bang-bang protection technique recently applied to flying qubits in [Damodarakurup et al., Phys. Rev. Lett. 103, 040502]. Bang-bang operations are implemented through appropriately oriented waveplates and dynamical decoupling is shown to be potentially useful to contrast a generic decoherence acting on polarization qubits propagating in dispersive media like, e.g., optical fibers.