ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating Entanglement and Squeezed States of Nuclear Spins in Quantum Dots

110   0   0.0 ( 0 )
 نشر من قبل Mark Rudner
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entanglement generation and detection are two of the most sought-after goals in the field of quantum control. Besides offering a means to probe some of the most peculiar and fundamental aspects of quantum mechanics, entanglement in many-body systems can be used as a tool to reduce fluctuations below the standard quantum limit. For spins, or spin-like systems, such a reduction of fluctuations can be realized with so-called squeezed states. Here we present a scheme for achieving coherent spin squeezing of nuclear spin states in few-electron quantum dots. This work represents a major shift from earlier studies in quantum dots, which have explored classical narrowing of the nuclear polarization distribution through feedback involving stochastic spin flips. In contrast, we use the nuclear-polarization-dependence of the electron spin resonance (ESR) to provide a non-linearity which generates a non-trivial, area-preserving, twisting dynamics that squeezes and stretches the nuclear spin Wigner distribution without the need for nuclear spin flips.



قيم البحث

اقرأ أيضاً

We study the coupling between a singlet-triplet qubit realized in a double quantum dot to a topological qubit realized by spatially well-separated Majorana bound states. We demonstrate that the singlet-triplet qubit can be leveraged for readout of th e topological qubit and for supplementing the gate operations that cannot be performed by braiding of Majorana bound states. Furthermore, we extend our setup to a network of singlet-triplet and topological hybrid qubits that paves the way to scalable fault-tolerant quantum computing.
We present an adiabatic approach to the design of entangling quantum operations with two electron spins localized in separate InAs/GaAs quantum dots via the Coulomb interaction between optically-excited localized states. Slowly-varying optical pulses minimize the pulse noise and the relaxation of the excited states. An analytic dressed state solution gives a clear physical picture of the entangling process, and a numerical solution is used to investigate the error dynamics. For two vertically-stacked quantum dots we show that, for a broad range of dot parameters, a two-spin state with concurrence $C>0.85$ can be obtained by four optical pulses with durations $sim 0.1 - 1$ ns.
With the help of the spin-orbit interaction, we propose a scheme to perform holonomic single qubit gates on the electron spin confined to a quantum dot. The manipulation is done in the absence (or presence) of an applied magnetic field. By adiabatic changing the position of the confinement potential, one can rotate the spin state of the electron around the Bloch sphere in semiconductor heterostructures. The dynamics of the system is equivalent to employing an effective non-Abelian gauge potential whose structure depends on the type of the spin-orbit interaction. As an example, we find an analytic expression for the electron spin dynamics when the dot is moved around a circular path (with radius R) on the two dimensional electron gas (2DEG), and show that all single qubit gates can be realized by tuning the radius and orientation of the circular paths. Moreover, using the Heisenberg exchange interaction, we demonstrate how one can generate two-qubit gates by bringing two quantum dots near each other, yielding a scalable scheme to perform quantum computing on arbitrary N qubits. This proposal shows a way of realizing holonomic quantum computers in solid-state systems.
102 - Peihao Huang 2021
A spin qubit in semiconductor quantum dots holds promise for quantum information processing for scalability and long coherence time. An important semiconductor qubit system is a double quantum dot trapping two electrons or holes, whose spin states en code either a singlet-triplet qubit or two single-spin qubits coupled by exchange interaction. In this article, we report progress on spin dephasing of two exchange-coupled spins in a double quantum dot. We first discuss the schemes of two-qubit gates and qubit encodings in gate-defined quantum dots or donor atoms based on the exchange interaction. Then, we report the progress on spin dephasing of a singlet-triplet qubit or a two-qubit gate. The methods of suppressing spin dephasing are further discussed. The understanding of spin dephasing may provide insights into the realization of high-fidelity quantum gates for spin-based quantum computing.
331 - Andrea Morello 2007
This mini-review presents a simple and accessible summary on the fascinating physics of quantum nanomagnets coupled to a nuclear spin bath. These chemically synthesized systems are an ideal test ground for the theories of decoherence in mesoscopic qu antum degrees of freedom, when the coupling to the environment is local and not small. We shall focus here on the most striking quantum phenomenon that occurs in such nanomagnets, namely the tunneling of their giant spin through a high anisotropy barrier. It will be shown that perturbative treatments must be discarded, and replaced by a more sophisticated formalism where the dynamics of the nanomagnet and the nuclei that couple to it are treated together from the beginning. After a critical review of the theoretical predictions and their experimental verification, we continue with a set of experimental results that challenge our present understanding, and outline the importance of filling also this last gap in the theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا