ﻻ يوجد ملخص باللغة العربية
A quantum fluid passing an obstacle behaves differently from a classical one. When the flow is slow enough, the quantum gas enters a superfluid regime and neither whirlpools nor waves form around the obstacle. For higher flow velocities, it has been predicted that the perturbation induced by the defect gives rise to the turbulent emission of quantised vortices and to the nucleation of solitons. Using an interacting Bose gas of exciton-polaritons in a semiconductor microcavity, we report the transition from superfluidity to the hydrodynamic formation of oblique dark solitons and vortex streets in the wake of a potential barrier. The direct observation of these topological excitations provides key information on the mechanisms of superflow and shows the potential of polariton condensates for quantum turbulence studies.
We study a two-dimensional incoherently pumped exciton-polariton condensate described by an open-dissipative Gross-Pitaevskii equation for the polariton dynamics coupled to a rate equation for the exciton density. Adopting a hydrodynamic approach, we
We study the properties of propagating polariton wave-packets and their connection to the stability of doubly charged vortices. Wave-packet propagation and related photoluminescence spectra exhibit a rich behaviour dependent on the excitation regime.
We study exciton-polariton nonlinear optical fluids in a high momentum regime for the first time. Defects in the fluid develop into dark solitons whose healing length decreases with increasing density. We deduce interaction constants for continuous w
The experimental investigation of spontaneously created vortices is of utmost importance for the understanding of quantum phase transitions towards a superfluid phase, especially for two dimensional systems that are expected to be governed by the Ber
We study the necessary condition under which a resonantly driven exciton polariton superfluid flowing against an obstacle can generate turbulence. The value of the critical velocity is well estimated by the transition from elliptic to hyperbolic of a