ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of Powerful Gamma-Ray Flares from the Crab Nebula

350   0   0.0 ( 0 )
 نشر من قبل Marco Tavani
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The well known Crab Nebula is at the center of the SN1054 supernova remnant. It consists of a rotationally-powered pulsar interacting with a surrounding nebula through a relativistic particle wind. The emissions originating from the pulsar and nebula have been considered to be essentially stable. Here we report the detection of strong gamma-ray (100 MeV-10 GeV) flares observed by the AGILE satellite in September, 2010 and October, 2007. In both cases, the unpulsed flux increased by a factor of 3 compared to the non-flaring flux. The flare luminosity and short timescale favor an origin near the pulsar, and we discuss Chandra Observatory X-ray and HST optical follow-up observations of the nebula. Our observations challenge standard models of nebular emission and require power-law acceleration by shock-driven plasma wave turbulence within a ~1-day timescale.



قيم البحث

اقرأ أيضاً

Gamma-ray emission from the Crab Nebula has been recently shown to be unsteady. In this paper, we study the flux and spectral variability of the Crab above 100 MeV on different timescales ranging from days to weeks. In addition to the four main inten se and day-long flares detected by AGILE and Fermi-LAT between Sept. 2007 and Sept. 2012, we find evidence for week-long and less intense episodes of enhanced gamma-ray emission that we call waves. Statistically significant waves show timescales of 1-2 weeks, and can occur by themselves or in association with shorter flares. We present a refined flux and spectral analysis of the Sept. - Oct. 2007 gamma-ray enhancement episode detected by AGILE that shows both wave and flaring behavior. We extend our analysis to the publicly available Fermi-LAT dataset and show that several additional wave episodes can be identified. We discuss the spectral properties of the September 2007 wave/flare event and show that the physical properties of the waves are intermediate between steady and flaring states. Plasma instabilities inducing waves appear to involve spatial distances l sim 10^{16} cm and enhanced magnetic fields B sim (0.5 - 1) mG. Day-long flares are characterized by smaller distances and larger local magnetic fields. Typically, the deduced total energy associated with the wave phenomenon (E_w sim 10^{42} erg, where E_w is the kinetic energy of the emitting particles) is comparable with that associated to the flares, and can reach a few percent of the total available pulsar spindown energy. Most likely, flares and waves are the product of the same class of plasma instabilities that we show acting on different timescales and radiation intensities.
The Crab Nebula was formed after the collapse of a massive star about a thousand years ago, leaving behind a pulsar that inflates a bubble of ultra-relativistic electron-positron pairs permeated with magnetic field. The observation of brief but brigh t flares of energetic gamma rays suggests that pairs are accelerated to PeV energies within a few days; such rapid acceleration cannot be driven by shocks. Here, it is argued that the flares may be the smoking gun of magnetic dissipation in the Nebula. Using 2D and 3D particle-in-cell simulations, it is shown that the observations are consistent with relativistic magnetic reconnection, where pairs are subject to strong radiative cooling. The Crab flares may highlight the importance of relativistic magnetic reconnection in astrophysical sources.
The recent discovery of day-long gamma-ray flares in the Crab Nebula, presumed to be synchrotron emission by PeV (10^{15} eV) electrons in milligauss magnetic fields, presents a strong challenge to particle acceleration models. The observed photon en ergies exceed the upper limit (~100 MeV) obtained by balancing the acceleration rate and synchrotron radiation losses under standard conditions where the electric field is smaller than the magnetic field. We argue that a linear electric accelerator, operating at magnetic reconnection sites, is able to circumvent this difficulty. Sufficiently energetic electrons have gyroradii so large that their motion is insensitive to small-scale turbulent structures in the reconnection layer and is controlled only by large-scale fields. We show that such particles are guided into the reconnection layer by the reversing magnetic field as they are accelerated by the reconnection electric field. As these electrons become confined within the current sheet, they experience a decreasing perpendicular magnetic field that may drop below the accelerating electric field. This enables them to reach higher energies before suffering radiation losses and hence to emit synchrotron radiation in excess of the 100 MeV limit, providing a natural resolution to the Crab gamma-ray flare paradox.
113 - Martin C. Weisskopf 2012
Subsequent to announcements by the AGILE and by the Fermi-LAT teams of the discovery of gamma-ray flares from the Crab Nebula in the fall of 2010, an international collaboration has been monitoring X-Ray emission from the Crab on a regular basis usin g the Chandra X-Ray Observatory. Observations occur typically once per month when viewing constraints allow. The aim of the program is to characterize in depth the X-Ray variations within the Nebula, and, if possible, to much more precisely locate the origin of the gamma-ray flares. In 2011 April we triggered a set of Chandra Target-of-Opportunity observations in conjunction with the brightest gamma-ray flare yet observed. We briefly summarize the April X-ray observations and the information we have gleaned to date.
90 - Maxim Lyutikov 2016
We develop a model of particle acceleration in explosive reconnection events in relativistic magnetically-dominated plasmas and apply it to explain gamma-ray flares from the Crab Nebula. The model relies on development of current-driven instabilities on macroscopic scales (not related to plasma skin depths). Using analytical and numerical methods (fluid and particle-in-cell simulations), we study a number of model problems in relativistic magnetically-dominated plasma: (i) we extend Syrovatskys classical model of explosive X-point collapse to magnetically-dominated plasmas; (ii) we consider instability of two-dimensional force-free system of magnetic flux tubes; (iii) we consider merger of two zero total poloidal current magnetic flux tubes. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization. The X-point collapse stage is followed by magnetic island merger that dissipates a large fraction of the initial magnetic energy in a regime of forced reconnection, further accelerating the particles, but proceeds at a slower reconnection rate. Crab flares result from the initial explosive stages of magnetic island mergers of magnetic flux tubes produced in the bulk of nebula at intermediate polar regions. The post-termination shock plasma flow in the wind sectors with mild magnetization naturally generates large-scale highly magnetized structures. Internal kink-like instabilities lead to the formation of macroscopic current-carrying magnetic flux tubes that merge explosively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا