ﻻ يوجد ملخص باللغة العربية
Quantum phase diffusion in a small underdamped Nb/AlO$_x$/Nb junction ($sim$ 0.4 $mu$m$^2$) is demonstrated in a wide temperature range of 25-140 mK where macroscopic quantum tunneling (MQT) is the dominant escape mechanism. We propose a two-step transition model to describe the switching process in which the escape rate out of the potential well and the transition rate from phase diffusion to the running state are considered. The transition rate extracted from the experimental switching current distribution follows the predicted Arrhenius law in the thermal regime but is greatly enhanced when MQT becomes dominant.
We study quantum phase-slip (QPS) processes in a superconducting ring containing N Josephson junctions and threaded by an external static magnetic flux. In a such system, a QPS consists of a quantum tunneling event connecting two distinct classical s
We have constructed a microwave detector based on the voltage switching of an underdamped Josephson junction, that is positioned at a current antinode of a {lambda}/4 coplanar waveguide resonator. By measuring the switching current and the transmissi
We investigate experimentally the physics of quantum phase slips in one-dimensional Josephson Junction chains. These quantum phase-slips are induced by quantum phase fluctuations occurring on single junctions of the chain. In our experiment we can tu
We study the thermodynamic properties of a superconductor/normal metal/superconductor Josephson junction {in the short limit}. Owing to the proximity effect, such a junction constitutes a thermodynamic system where {phase difference}, supercurrent, t
We compute the current voltage characteristic of a chain of identical Josephson circuits characterized by a large ratio of Josephson to charging energy that are envisioned as the implementation of topologically protected qubits. We show that in the l