ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck early results. XXI. Properties of the interstellar medium in the Galactic plane

140   0   0.0 ( 0 )
 نشر من قبل Douglas Marshall
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(abridged) Planck has observed the entire sky from 30 GHz to 857GHz. The observed foreground emission contains contributions from different phases of the interstellar medium (ISM). We have separated the observed Galactic emission into the different gaseous components (atomic, molecular and ionised) in each of a number of Galactocentric rings. Templates are created for various Galactocentric radii using velocity information from atomic (neutral hydrogen) and molecular (12CO) observations. The ionised template is assumed to be traced by free-free emission as observed by WMAP, while 408 MHz emission is used to trace the synchrotron component. Gas emission not traced by the above templates, namely ark gas, as evidenced using Planck data, is included as an additional template, the first time such a component has been used in this way. These templates are then correlated with each of the Planck frequency bands, as well as other ancillary data. The emission per column density of the gas templates allows us to create distinct spectral energy distributions (SEDs) per Galactocentric ring and in each of the gaseous tracers from 1.4 GHz to 25 THz (12mu m). Apart from the thermal dust and free-free emission, we have probed the Galaxy for anomalous (e.g., spinning) dust as well as synchrotron emission. We show that anomalous dust emission is present in the atomic, molecular and dark gas phases throughout the Galactic disk. The derived dust propeties associated with the dark gas phase are derived but do not allow us to reveal the nature of this phase. For all environments, the anomalous emission is consistent with rotation from polycyclic aromatic hydrocarbons (PAHs) and, according to our simple model, accounts for $(25pm5)%$ (statistical) of the total emission at 30 GHz.



قيم البحث

اقرأ أيضاً

This paper presents the first results of comparison of Planck along with IRAS data with Green Bank Telescope 21-cm observations in 14 fields covering more than 800 square degrees at high Galactic latitude. Galactic dust emission for fields with avera ge HI column density lower than 2 x 10^20 cm^-2 is well correlated with 21-cm emission. The residual emission in these fields, once the HI-correlated emission is removed, is consistent with the expected statistical properties of the cosmic infrared background fluctuations. Fields with larger column densities show significant excess dust emission compared to the HI column density. Regions of excess lie in organized structures that suggest the presence of hydrogen in molecular form, though they are not always correlated with CO emission. Dust emission from intermediate-velocity clouds is detected with high significance. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T~20 K), lower sub-millimeter dust opacity, and a relative abundance of very small grains to large grains about four times higher. These results are compatible with expectations for clouds that are part of the Galactic fountain in which there is dust shattering and fragmentation. Correlated dust emission in HVCs is not detected; the average of the 99.9% confidence upper limits to the emissivity is 0.15 times the local ISM value at 857 and 3000 GHz, in accordance with gas phase evidence for lower metallicity and depletion in these clouds. Unexpected anti-correlated variations of the dust temperature and emission cross-section per H atom are identified in the local ISM and IVCs, a trend that continues into molecular environments. This suggests that dust growth through aggregation, seen in molecular clouds, is active much earlier in the cloud condensation and star formation processes.
(abridged) We perform a detailed investigation of sources from the Cold Cores Catalogue of Planck Objects (C3PO). Our goal is to probe the reliability of the detections, validate the separation between warm and cold dust emission components, provide the first glimpse at the nature, internal morphology and physical characterictics of the Planck-detected sources. We focus on a sub-sample of ten sources from the C3PO list, selected to sample different environments, from high latitude cirrus to nearby (150pc) and remote (2kpc) molecular complexes. We present Planck surface brightness maps and derive the dust temperature, emissivity spectral index, and column densities of the fields. With the help of higher resolution Herschel and AKARI continuum observations and molecular line data, we investigate the morphology of the sources and the properties of the substructures at scales below the Planck beam size.
The Planck survey provides unprecedented full-sky coverage of the submillimetre polarized emission from Galactic dust, bringing new constraints on the properties of dust. The dust grains that emit the radiation seen by Planck in the submillimetre als o extinguish and polarize starlight in the visible. Comparison of the polarization of the emission and of the interstellar polarization on selected lines of sight probed by stars provides unique new diagnostics of the emission and light scattering properties of dust. Using ancillary catalogues of interstellar polarization and extinction of starlight, we obtain the degree of polarization, $p_V$ , and the optical depth in the V band to the star, $tau_V$. Toward these stars we measure the submillimetre polarized intensity, $P_S$, and total intensity, $I_S$, in the Planck 353 GHz channel. For those lines of sight through the diffuse interstellar medium with comparable values of the estimated column density and polarization directions close to orthogonal, we correlate properties in the submillimetre and visible to find two ratios, $R_{S/V} = (P_S/I_S)/(p_V/tau_V)$ and $R_{P/p} = P_S/p_V$ , the latter focusing directly on the polarization properties of the aligned grain population alone. We find $R_{S/V}$ = 4.2, with statistical and systematic uncertainties 0.2 and 0.3, respectively, and $R_{P/p}$ = 5.4 MJy sr$^{-1}$, with uncertainties 0.2 and 0.3 MJy sr$^{-1}$, respectively. Our estimate of $R_{S/V}$ is compatible with predictions based on a range of polarizing dust models that have been developed for the diffuse interstellar medium. However, our estimate of $R_{P/p}$ is not compatible with predictions, which are too low by a factor of about 2.5. This more discriminating diagnostic, $R_{P/p}$, indicates that changes to the optical properties in the models of the aligned grain population are required.
Ionized carbon is the main gas-phase reservoir of carbon in the neutral diffuse interstellar medium and its 158 micron fine structure transition [CII] is the most important cooling line of the diffuse interstellar medium (ISM). We combine [CII] absor ption and emission spectroscopy to gain an improved understanding of physical conditions in the different phases of the ISM. We present high resolution [CII] spectra obtained with the Herschel/HIFI instrument towards bright dust continuum sources regions in the Galactic plane, probing simultaneously the diffuse gas along the line of sight and the background high-mass star forming regions. These data are complemented by observations of the 492 and 809 GHz fine structure lines of atomic carbon and by medium spectral resolution spectral maps of the fine structure lines of atomic oxygen at 63 and 145 microns with Herschel/PACS. We show that the presence of foreground absorption may completely cancel the emission from the background source in medium spectral resolution data and that high spectral resolution spectra are needed to interpret the [CII] and [OI] emission and the [CII]/FIR ratio. This phenomenon may explain part of the [CII]/FIR deficit seen in external luminous infrared galaxies. The C+ and C excitation in the diffuse gas is consistent with a median pressure of 5900 Kcm-3 for a mean TK ~100 K. The knowledge of the gas density allows us to determine the filling factor of the absorbing gas along the selected lines of sight: the median value is 2.4 %, in good agreement with the CNM properties. The mean excitation temperature is used to derive the average cooling due to C+ in the Galactic plane : 9.5 x 10^{-26} erg/s/H. Along the observed lines of sight, the gas phase carbon abundance does not exhibit a strong gradient as a function of Galacto-centric radius and has a weighted average of C/H = 1.5 +/- 0.4 x 10^{-4}.
We have investigated the magneto-ionic turbulence in the interstellar medium through spatial gradients of the complex radio polarization vector in the Canadian Galactic Plane Survey (CGPS). The CGPS data cover 1300 square-degrees, over the range ${53 ^{circ}}leq{ell}leq{192^{circ}}$, ${-3^{circ}}leq{b}leq{5^{circ}}$ with an extension to ${b}={17.5^{circ}}$ in the range ${101^{circ}}leq{ell}leq{116^{circ}}$, and arcminute resolution at 1420 MHz. Previous studies found a correlation between the skewness and kurtosis of the polarization gradient and the Mach number of the turbulence, or assumed this correlation to deduce the Mach number of an observed turbulent region. We present polarization gradient images of the entire CGPS dataset, and analyze the dependence of these images on angular resolution. The polarization gradients are filamentary, and the length of these filaments is largest towards the Galactic anti-center, and smallest towards the inner Galaxy. This may imply that small-scale turbulence is stronger in the inner Galaxy, or that we observe more distant features at low Galactic longitudes. For every resolution studied, the skewness of the polarization gradient is influenced by the edges of bright polarization gradient regions, which are not related to the turbulence revealed by the polarization gradients. We also find that the skewness of the polarization gradient is sensitive to the size of the box used to calculate the skewness, but insensitive to Galactic longitude, implying that the skewness only probes the number and magnitude of the inhomogeneities within the box. We conclude that the skewness and kurtosis of the polarization gradient are not ideal statistics for probing natural magneto-ionic turbulence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا