ﻻ يوجد ملخص باللغة العربية
(abridged) Planck has observed the entire sky from 30 GHz to 857GHz. The observed foreground emission contains contributions from different phases of the interstellar medium (ISM). We have separated the observed Galactic emission into the different gaseous components (atomic, molecular and ionised) in each of a number of Galactocentric rings. Templates are created for various Galactocentric radii using velocity information from atomic (neutral hydrogen) and molecular (12CO) observations. The ionised template is assumed to be traced by free-free emission as observed by WMAP, while 408 MHz emission is used to trace the synchrotron component. Gas emission not traced by the above templates, namely ark gas, as evidenced using Planck data, is included as an additional template, the first time such a component has been used in this way. These templates are then correlated with each of the Planck frequency bands, as well as other ancillary data. The emission per column density of the gas templates allows us to create distinct spectral energy distributions (SEDs) per Galactocentric ring and in each of the gaseous tracers from 1.4 GHz to 25 THz (12mu m). Apart from the thermal dust and free-free emission, we have probed the Galaxy for anomalous (e.g., spinning) dust as well as synchrotron emission. We show that anomalous dust emission is present in the atomic, molecular and dark gas phases throughout the Galactic disk. The derived dust propeties associated with the dark gas phase are derived but do not allow us to reveal the nature of this phase. For all environments, the anomalous emission is consistent with rotation from polycyclic aromatic hydrocarbons (PAHs) and, according to our simple model, accounts for $(25pm5)%$ (statistical) of the total emission at 30 GHz.
This paper presents the first results of comparison of Planck along with IRAS data with Green Bank Telescope 21-cm observations in 14 fields covering more than 800 square degrees at high Galactic latitude. Galactic dust emission for fields with avera
(abridged) We perform a detailed investigation of sources from the Cold Cores Catalogue of Planck Objects (C3PO). Our goal is to probe the reliability of the detections, validate the separation between warm and cold dust emission components, provide
The Planck survey provides unprecedented full-sky coverage of the submillimetre polarized emission from Galactic dust, bringing new constraints on the properties of dust. The dust grains that emit the radiation seen by Planck in the submillimetre als
Ionized carbon is the main gas-phase reservoir of carbon in the neutral diffuse interstellar medium and its 158 micron fine structure transition [CII] is the most important cooling line of the diffuse interstellar medium (ISM). We combine [CII] absor
We have investigated the magneto-ionic turbulence in the interstellar medium through spatial gradients of the complex radio polarization vector in the Canadian Galactic Plane Survey (CGPS). The CGPS data cover 1300 square-degrees, over the range ${53