ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck early results. XX. New light on anomalous microwave emission from spinning dust grains

117   0   0.0 ( 0 )
 نشر من قبل Clive Dickinson
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Anomalous microwave emission (AME) has been observed by numerous experiments in the frequency range ~10-60 GHz. Using Planck maps and multi-frequency ancillary data, we have constructed spectra for two known AME regions: the Perseus and Rho Ophiuchi molecular clouds. The spectra are well fitted by a combination of free-free radiation, cosmic microwave background, thermal dust, and electric dipole radiation from small spinning dust grains. The spinning dust spectra are the most precisely measured to date, and show the high frequency side clearly for the first time. The spectra have a peak in the range 20-40 GHz and are detected at high significances of 17.1 sigma for Perseus and 8.4 sigma for Rho Ophiuchi. In Perseus, spinning dust in the dense molecular gas can account for most of the AME; the low density atomic gas appears to play a minor role. In Rho Ophiuchi, the ~30 GHz peak is dominated by dense molecular gas, but there is an indication of an extended tail at frequencies 50-100 GHz, which can be accounted for by irradiated low density atomic gas. The dust parameters are consistent with those derived from other measurements. We have also searched the Planck map at 28.5 GHz for candidate AME regions, by subtracting a simple model of the synchrotron, free-free, and thermal dust. We present spectra for two of the candidates; S140 and S235 are bright HII regions that show evidence for AME, and are well fitted by spinning dust models.



قيم البحث

اقرأ أيضاً

108 - B. T. Draine 2016
The quantization of energy levels in very nanoparticles suppresses dissipative processes that convert grain rotational kinetic energy into heat. For grains small enough to have GHz rotation rates, the suppression of dissipation can be extreme. As a r esult, alignment of such grains is suppressed. This applies both to alignment of the grain body with its angular momentum J, and to alignment of J with the local magnetic field B_0. If the anomalous microwave emission is rotational emission from spinning grains, it will be negligibly polarized at GHz frequencies, with P < 10^{-6} at frequencies above 10 GHz.
Several interstellar environments produce anomalous microwave emission, with brightness-peaks at tens-of-gigahertz frequencies. The emissions origins are uncertain - rapidly-spinning nano-particles could emit electric-dipole radiation, but polycyclic aromatic hydrocarbons proposed as the carrier are now found not to correlate with Galactic signals. The difficulty is to identify co-spatial sources over long lines of sight. Here we identify anomalous microwave emission in three proto-planetary discs. These are the only known systems that host hydrogenated nano-diamonds, in contrast to very common detection of polycyclic aromatic hydrocarbons. Spectroscopy locates the nano-diamonds close to the host-stars, at physically-constrained temperatures. Developing disc models, we reproduce the emission with diamonds 0.75-1.1 nanometres in radius, holding less than or equal to 1-2 per cent of the carbon budget. The microwave-emission:stellar-luminosity ratios are approximately constant, allowing nano-diamonds to be ubiquitous but emitting below detection thresholds in many star-systems. This can unify the findings with similar-sized diamonds found within solar system meteorites. As nano-diamond spectral absorption is seen in interstellar sightlines, these particles are also a candidate for generating galaxy-scale anomalous microwave emission.
Polarized emission observed by Planck HFI at 353 GHz towards a sample of nearby fields is presented, focusing on the statistics of polarization fractions $p$ and angles $psi$. The polarization fractions and column densities in these nearby fields are representative of the range of values obtained over the whole sky. We find that: (i) the largest polarization fractions are reached in the most diffuse fields; (ii) the maximum polarization fraction $p_mathrm{max}$ decreases with column density $N_mathrm{H}$ in the more opaque fields with $N_mathrm{H} > 10^{21},mathrm{cm}^{-2}$; and (iii) the polarization fraction along a given line of sight is correlated with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical (MHD) turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate of this parameter may be recovered from the maximum polarization fraction $p_mathrm{max}$ in diffuse regions where the magnetic field is ordered on large scales and perpendicular to the line of sight. This emphasizes the impact of anisotropies of the magnetic field on the emerging polarization signal. The decrease of the polarization fraction with column density in nearby molecular clouds is well reproduced in the simulations, indicating that it is essentially due to the turbulent structure of the magnetic field: an accumulation of variously polarized structures along the line of sight leads to such an anti-correlation. In the simulations, polarization fractions are also found to anti-correlate with the angle dispersion function $mathcal{S}$. [abridged]
This paper presents an all-sky model of dust emission from the Planck 857, 545 and 353 GHz, and IRAS 100 micron data. Using a modified black-body fit to the data we present all-sky maps of the dust optical depth, temperature, and spectral index over the 353-3000 GHz range. This model is a tight representation of the data at 5 arc min. It shows variations of the order of 30 % compared with the widely-used model of Finkbeiner, Davis, and Schlegel. The Planck data allow us to estimate the dust temperature uniformly over the whole sky, providing an improved estimate of the dust optical depth compared to previous all-sky dust model, especially in high-contrast molecular regions. An increase of the dust opacity at 353 GHz, tau_353/N_H, from the diffuse to the denser interstellar medium (ISM) is reported. It is associated with a decrease in the observed dust temperature, T_obs, that could be due at least in part to the increased dust opacity. We also report an excess of dust emission at HI column densities lower than 10^20 cm^-2 that could be the signature of dust in the warm ionized medium. In the diffuse ISM at high Galactic latitude, we report an anti-correlation between tau_353/N_H and T_obs while the dust specific luminosity, i.e., the total dust emission integrated over frequency (the radiance) per hydrogen atom, stays about constant. The implication is that in the diffuse high-latitude ISM tau_353 is not as reliable a tracer of dust column density as we conclude it is in molecular clouds where the correlation of tau_353 with dust extinction estimated using colour excess measurements on stars is strong. To estimate Galactic E(B-V) in extragalactic fields at high latitude we develop a new method based on the thermal dust radiance, instead of the dust optical depth, calibrated to E(B-V) using reddening measurements of quasars deduced from Sloan Digital Sky Survey data.
Anomalous microwave emission (AME) is believed to be due to electric dipole radiation from small spinning dust grains. The aim of this paper is a statistical study of the basic properties of AME regions and the environment in which they emit. We used WMAP and Planck maps, combined with ancillary radio and IR data, to construct a sample of 98 candidate AME sources, assembling SEDs for each source using aperture photometry on 1deg-smoothed maps from 0.408 GHz up to 3000 GHz. Each spectrum is fitted with a simple model of free-free, synchrotron (where necessary), cosmic microwave background (CMB), thermal dust, and spinning dust components. We find that 42 of the 98 sources have significant (>5sigma) excess emission at frequencies between 20 and 60 GHz. An analysis of the potential contribution of optically thick free-free emission from ultra-compact HII regions, using IR colour criteria, reduces the significant AME sample to 27 regions. The spectrum of the AME is consistent with model spectra of spinning dust. The AME regions tend to be more spatially extended than regions with little or no AME. The AME intensity is strongly correlated with the submillimetre/IR flux densities and comparable to previous AME detections in the literature. AME emissivity, defined as the ratio of AME to dust optical depth, varies by an order of magnitude for the AME regions. The AME regions tend to be associated with cooler dust in the range 14-20 K and an average emissivity index of +1.8, while the non-AME regions are typically warmer, at 20-27 K. In agreement with previous studies, the AME emissivity appears to decrease with increasing column density. The emerging picture is that the bulk of the AME is coming from the polycyclic aromatic hydrocarbons and small dust grains from the colder neutral interstellar medium phase (Abridged).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا