ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization and Simulation of the Response of Multi Pixel Photon Counters to Low Light Levels

294   0   0.0 ( 0 )
 نشر من قبل Fabrice Retiere
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Vacheret




اسأل ChatGPT حول البحث

The calorimeter, range detector and active target elements of the T2K near detectors rely on the Hamamatsu Photonics Multi-Pixel Photon Counters (MPPCs) to detect scintillation light produced by charged particles. Detailed measurements of the MPPC gain, afterpulsing, crosstalk, dark noise, and photon detection efficiency for low light levels are reported. In order to account for the impact of the MPPC behavior on T2K physics observables, a simulation program has been developed based on these measurements. The simulation is used to predict the energy resolution of the detector.



قيم البحث

اقرأ أيضاً

137 - G. Blazey 2019
Results of radiation tests of Hamamatsu 2.0 x 2.0~mm2 through-silicon-via (S13360-2050VE) multi-pixel photon counters, or MPPCs [1], are presented. Distinct sets of eight MPPCs were exposed to four different 1~MeV neutron equivalent doses of 200 MeV protons. Measurements of the breakdown voltage, gain and noise rates at different bias overvoltages, photoelectron thresholds, and LED illumination levels were taken before and after irradiation. No significant deterioration in performance was observed for breakdown voltage, gain, and response. Noise rates increased significantly with irradiation. These studies were undertaken in the context of MPPC requirements for the Cosmic Ray Veto detector of the Mu2e experiment at the Fermi National Accelerator Laboratory.
We have developed a Multi-Pixel Photon Counter (MPPC) for the neutrino detectors of T2K experiment. About 64,000 MPPCs have been produced and tested in about a year. In order to characterize a large number of MPPCs, we have developed a system that si multaneously measures 64 MPPCs with various bias voltage and temperature. The performance of MPPCs are found to satisfy the requirement of T2K experiment. In this paper, we present the performance of 17,686 MPPCs measured at Kyoto University.
The multi-pixel photon counter (MPPC) is a newly developed photodetector with an excellent photon counting capability. It also has many attractive features such as small size, high gain, low operation voltage and power consumption, and capability of operating in magnetic fields and in room temperature. The basic performance of samples has been measured. A gain of ~10^6 is achieved with a noise rate less than 1 MHz with 1 p.e. threshold, and cross-talk probability of less than 30% at room temperature. The photon detection efficiency for green light is twice or more that of the photomultiplier tubes. It is found that the basic performance of the MPPC is satisfactory for use in real experiments.
131 - B. Beltran , H. Bichsel , B. Cai 2011
The third phase of the Sudbury Neutrino Observatory (SNO) experiment added an array of 3He proportional counters to the detector. The purpose of this Neutral Current Detection (NCD) array was to observe neutrons resulting from neutral-current solar n eutrino-deuteron interactions. We have developed a detailed simulation of the current pulses from the NCD array proportional counters, from the primary neutron capture on 3He through the NCD array signal-processing electronics. This NCD array Monte Carlo simulation was used to model the alpha-decay background in SNOs third-phase 8B solar-neutrino measurement.
A Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 h as achieved two fundamental milestones: the rejection of electron recoil background with a power of ~10^7, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon. These results rely on the accurate simulation of the detector response to the liquid argon scintillation, its ionization, and electron-ion recombination processes. This work provides a complete overview of the DarkSide Monte Carlo and of its performance, with a particular focus on PARIS, the custom-made liquid argon response model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا