ترغب بنشر مسار تعليمي؟ اضغط هنا

Automata and temporal logic over arbitrary linear time

146   0   0.0 ( 0 )
 نشر من قبل Julien Cristau
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Julien Cristau




اسأل ChatGPT حول البحث

Linear temporal logic was introduced in order to reason about reactive systems. It is often considered with respect to infinite words, to specify the behaviour of long-running systems. One can consider more general models for linear time, using words indexed by arbitrary linear orderings. We investigate the connections between temporal logic and automata on linear orderings, as introduced by Bruy`ere and Carton. We provide a doubly exponential procedure to compute from any LTL formula with Until, Since, and the Stavi connectives an automaton that decides whether that formula holds on the input word. In particular, since the emptiness problem for these automata is decidable, this transformation gives a decision procedure for the satisfiability of the logic.



قيم البحث

اقرأ أيضاً

In the mid 80s, Lichtenstein, Pnueli, and Zuck proved a classical theorem stating that every formula of Past LTL (the extension of LTL with past operators) is equivalent to a formula of the form $bigwedge_{i=1}^n mathbf{G}mathbf{F} varphi_i vee mathb f{F}mathbf{G} psi_i$, where $varphi_i$ and $psi_i$ contain only past operators. Some years later, Chang, Manna, and Pnueli built on this result to derive a similar normal form for LTL. Both normalisation procedures have a non-elementary worst-case blow-up, and follow an involved path from formulas to counter-free automata to star-free regular expressions and back to formulas. We improve on both points. We present a direct and purely syntactic normalisation procedure for LTL yielding a normal form, comparable to the one by Chang, Manna, and Pnueli, that has only a single exponential blow-up. As an application, we derive a simple algorithm to translate LTL into deterministic Rabin automata. The algorithm normalises the formula, translates it into a special very weak alternating automaton, and applies a simple determinisation procedure, valid only for these special automata.
We propose a measure and a metric on the sets of infinite traces generated by a set of atomic propositions. To compute these quantities, we first map properties to subsets of the real numbers and then take the Lebesgue measure of the resulting sets. We analyze how this measure is computed for Linear Temporal Logic (LTL) formulas. An implementation for computing the measure of bounded LTL properties is provided and explained. This implementation leverages SAT model counting and effects independence checks on subexpressions to compute the measure and metric compositionally.
Let S be a commutative semiring. M. Droste and P. Gastin have introduced in 2005 weighted monadic second order logic WMSOL with weights in S. They use a syntactic fragment RMSOL of WMSOL to characterize word functions (power series) recognizable by w eighted automata, where the semantics of quantifiers is used both as arithmetical operations and, in the boolean case, as quantification. Already in 2001, B. Courcelle, J.Makowsky and U. Rotics have introduced a formalism for graph parameters definable in Monadic Second order Logic, here called MSOLEVAL with values in a ring R. Their framework can be easily adapted to semirings S. This formalism clearly separates the logical part from the arithmetical part and also applies to word functions. In this paper we give two proofs that RMSOL and MSOLEVAL with values in S have the same expressive power over words. One proof shows directly that MSOLEVAL captures the functions recognizable by weighted automata. The other proof shows how to translate the formalisms from one into the other.
We consider the temporal logic with since and until modalities. This temporal logic is expressively equivalent over the class of ordinals to first-order logic by Kamps theorem. We show that it has a PSPACE-complete satisfiability problem over the cla ss of ordinals. Among the consequences of our proof, we show that given the code of some countable ordinal alpha and a formula, we can decide in PSPACE whether the formula has a model over alpha. In order to show these results, we introduce a class of simple ordinal automata, as expressive as Buchi ordinal automata. The PSPACE upper bound for the satisfiability problem of the temporal logic is obtained through a reduction to the nonemptiness problem for the simple ordinal automata.
We study complexity of the model-checking problems for LTL with registers (also known as freeze LTL) and for first-order logic with data equality tests over one-counter automata. We consider several classes of one-counter automata (mainly determinist ic vs. nondeterministic) and several logical fragments (restriction on the number of registers or variables and on the use of propositional variables for control locations). The logics have the ability to store a counter value and to test it later against the current counter value. We show that model checking over deterministic one-counter automata is PSPACE-complete with infinite and finite accepting runs. By constrast, we prove that model checking freeze LTL in which the until operator is restricted to the eventually operator over nondeterministic one-counter automata is undecidable even if only one register is used and with no propositional variable. As a corollary of our proof, this also holds for first-order logic with data equality tests restricted to two variables. This makes a difference with the facts that several verification problems for one-counter automata are known to be decidable with relatively low complexity, and that finitary satisfiability for the two logics are decidable. Our results pave the way for model-checking memoryful (linear-time) logics over other classes of operational models, such as reversal-bounded counter machines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا