ترغب بنشر مسار تعليمي؟ اضغط هنا

The SWELLS survey. II. Breaking the disk-halo degeneracy in the spiral galaxy gravitational lens SDSS J2141-0001

574   0   0.0 ( 0 )
 نشر من قبل Aaron Dutton
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. A. Dutton




اسأل ChatGPT حول البحث

The degeneracy among the disk, bulge and halo contributions to galaxy rotation curves prevents an understanding of the distribution of baryons and dark matter in disk galaxies. In an attempt to break this degeneracy, we present an analysis of the spiral galaxy strong gravitational lens SDSS J2141-0001, discovered as part of the SLACS survey. We present new Hubble Space Telescope multicolor imaging, gas and stellar kinematics data derived from long-slit spectroscopy, and K-band LGS adaptive optics imaging, both from the Keck telescopes. We model the galaxy as a sum of concentric axisymmetric bulge, disk and halo components and infer the contribution of each component, using information from gravitational lensing and gas kinematics. This analysis yields a best-fitting total (disk plus bulge) stellar mass of log_{10}(Mstar/Msun) = 10.99(+0.11,-0.25). The photometric data combined with stellar population synthesis models yield log_{10}(Mstar/Msun) = 10.97pm0.07, and 11.21pm0.07 for the Chabrier and Salpeter IMFs, respectively. Accounting for the expected gas fraction of simeq 20% reduces the lensing plus kinematics stellar mass by 0.10pm0.05 dex, resulting in a Bayes factor of 11.9 in favor of a Chabrier IMF. The dark matter halo is roughly spherical, with minor to major axis ratio q_{halo}=0.91(+0.15,-0.13). The dark matter halo has a maximum circular velocity of V_{max}=276(+17,-18) km/s, and a central density parameter of log_{10}Delta_{V/2}=5.9(+0.9,-0.5). This is higher than predicted for uncontracted dark matter haloes in LCDM cosmologies, log_{10}Delta_{V/2}=5.2, suggesting that either the halo has contracted in response to galaxy formation, or that the halo has a higher than average concentration. At 2.2 disk scale lengths the dark matter fraction is f_{DM}=0.55(+0.20,-0.15), suggesting that SDSS J2141-0001 is sub-maximal.



قيم البحث

اقرأ أيضاً

We construct a fully self-consistent mass model for the lens galaxy J2141 at z=0.14, and use it to improve on previous studies by modelling its gravitational lensing effect, gas rotation curve and stellar kinematics simultaneously. We adopt a very fl exible axisymmetric mass model constituted by a generalized NFW dark matter halo and a stellar mass distribution obtained by deprojecting the MGE fit to the high-resolution K-band LGSAO imaging data of the galaxy, with the (spatially constant) M/L ratio as a free parameter. We model the stellar kinematics by solving the anisotropic Jeans equations. We find that the inner logarithmic slope of the dark halo is weakly constrained (gamma = 0.82^{+0.65}_{-0.54}), and consistent with an unmodified NFW profile. We infer the galaxy to have (i) a dark matter fraction within 2.2 disk radii of 0.28^{+0.15}_{-0.10}, independent of the galaxy stellar population, implying a maximal disk for J2141; (ii) an apparently uncontracted dark matter halo, with concentration c_{-2} = 7.7_{-2.5}^{+4.2} and virial velocity v_{vir} = 242_{-39}^{+44} km/s, consistent with LCDM predictions; (iii) a slightly oblate halo (q_h = 0.75^{+0.27}_{-0.16}), consistent with predictions from baryon-affected models. Comparing the stellar mass inferred from the combined analysis (log_{10} Mstar/Msun = 11.12_{-0.09}^{+0.05}) with that inferred from SPS modelling of the galaxies colours, and accounting for a cold gas fraction of 20+/-10%, we determine a preference for a Chabrier IMF over Salpeter IMF by a Bayes factor of 5.7 (substantial evidence). We infer a value beta_{z} = 1 - sigma^2_{z}/sigma^2_{R} = 0.43_{-0.11}^{+0.08} for the orbital anisotropy parameter in the meridional plane, in agreement with most studies of local disk galaxies, and ruling out at 99% CL that the dynamics of this system can be described by a two-integral distribution function. [Abridged]
The degeneracy between the disk and the dark matter contribution to galaxy rotation curves remains an important uncertainty in our understanding of disk galaxies. Here we discuss a new method for breaking this degeneracy using gravitational lensing b y spiral galaxies, and apply this method to the spiral lens B1600+434 as an example. The combined image and lens photometry constraints allow models for B1600+434 with either a nearly singular dark matter halo, or a halo with a sizable core. A maximum disk model is ruled out with high confidence. Further information, such as the circular velocity of this galaxy, will help break the degeneracies. Future studies of spiral galaxy lenses will be able to determine the relative contribution of disk, bulge, and halo to the mass in the inner parts of galaxies.
Galaxies located in the environment or on the line of sight towards gravitational lenses can significantly affect lensing observables, and can lead to systematic errors on the measurement of $H_0$ from the time-delay technique. We present the results of a systematic spectroscopic identification of the galaxies in the field of view of the lensed quasar HE0435-1223, using the W. M. Keck, Gemini and ESO-Very Large telescopes. Our new catalog triples the number of known galaxy redshifts in the vicinity of the lens, expanding to 102 the number of measured redshifts for galaxies separated by less than 3 arcmin from the lens. We complement our catalog with literature data to gather redshifts up to 15 arcmin from the lens, and search for galaxy groups or clusters projected towards HE0435-1223. We confirm that the lens is a member of a small group that includes at least 12 galaxies, and find 8 other group candidates near the line of sight of the lens. The flexion shift, namely the shift of lensed images produced by high order perturbation of the lens potential, is calculated for each galaxy/group and used to identify which objects produce the largest perturbation of the lens potential. This analysis demonstrates that i) at most three of the five brightest galaxies projected within 12 arcsec of the lens need to be explicitly used in the lens models, and ii) the groups can be treated in the lens model as an external tidal field (shear) contribution.
691 - A. A. Dutton 2012
Recent work has suggested that the stellar initial mass function (IMF) is not universal, but rather is correlated with galaxy stellar mass, stellar velocity dispersion, or morphological type. In this paper, we investigate variations of the IMF within individual galaxies. For this purpose, we use strong lensing and gas kinematics to measure independently the normalisation of the IMF of the bulge and disk components of a sample of 5 massive spiral galaxies with substantial bulge components taken from the SWELLS survey. We find that the stellar mass of the bulges are tightly constrained by the lensing and kinematic data. A comparison with masses based on stellar population synthesis models fitted to optical and near infrared photometry favors a Salpeter-like normalisation of the IMF. Conversely, the disk masses are less well constrained due to degeneracies with the dark matter halo, but are consistent with Milky Way type IMFs in agreement with previous studies. The disks are submaximal at 2.2 disk scale lengths, but due to the contribution of the bulges, the galaxies are baryon dominated at 2.2 disk scale lengths. Globally, our inferred IMF normalisation is consistent with that found for early-type galaxies of comparable stellar mass (> 10^11 M_sun). Our results suggest a non-universal IMF within the different components of spiral galaxies, adding to the well-known differences in stellar populations between disks and bulges.
142 - Aaron A. Dutton 2012
We use the relations between aperture stellar velocity dispersion (sigma_ap), stellar mass (M_sps), and galaxy size (R_e) for a sample of sim 150,000 early-type galaxies from SDSS/DR7 to place constraints on the stellar initial mass function (IMF) an d dark halo response to galaxy formation. We build LCDM based mass models that reproduce, by construction, the relations between galaxy size, light concentration and stellar mass, and use the spherical Jeans equations to predict sigma_ap. Given our model assumptions (including those in the stellar population synthesis models), we find that reproducing the median sigma_ap vs M_sps relation is not possible with {it both} a universal IMF and a universal dark halo response. Significant departures from a universal IMF and/or dark halo response are required, but there is a degeneracy between these two solutions. We show that this degeneracy can be broken using the strength of the correlation between residuals of the velocity-mass (Delta log sigma_ap) and size-mass (Delta log R_e) relations. The slope of this correlation, d_vr equiv Delta log sigma_ap/Delta log R_e, varies systematically with galaxy mass from d_vr simeq -0.45 at M_sps sim 10^{10}M_sun, to d_vr simeq -0.15 at M_sps sim 10^{11.6} M_sun. The virial fundamental plane (FP) has d_vr=-1/2, and thus we find the tilt of the observed FP is mass dependent. Reproducing this tilt requires {it both} a non-universal IMF and a non-universal halo response. Our best model has mass-follows-light at low masses (Msps < 10^{11.2}M_sun) and unmodified NFW haloes at M_sps sim 10^{11.5} M_sun. The stellar masses imply a mass dependent IMF which is lighter than Salpeter at low masses and heavier than Salpeter at high masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا