ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy decay and frequency shift of a superconducting qubit from non-equilibrium quasiparticles

133   0   0.0 ( 0 )
 نشر من قبل James Wenner
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quasiparticles are an important decoherence mechanism in superconducting qubits, and can be described with a complex admittance that is a generalization of the Mattis-Bardeen theory. By injecting non-equilibrium quasiparticles with a tunnel junction, we verify qualitatively the expected change of the decay rate and frequency in a phase qubit. With their relative change in agreement to within 4% of prediction, the theory can be reliably used to infer quasiparticle density. We describe how settling of the decay rate may allow determination of whether qubit energy relaxation is limited by non-equilibrium quasiparticles.



قيم البحث

اقرأ أيضاً

176 - J. Wenner , Yi Yin , Erik Lucero 2012
Superconducting qubits probe environmental defects such as non-equilibrium quasiparticles, an important source of decoherence. We show that hot non-equilibrium quasiparticles, with energies above the superconducting gap, affect qubits differently fro m quasiparticles at the gap, implying qubits can probe the dynamic quasiparticle energy distribution. For hot quasiparticles, we predict a non-neligable increase in the qubit excited state probability P_e. By injecting hot quasiparticles into a qubit, we experimentally measure an increase of P_e in semi-quantitative agreement with the model and rule out the typically assumed thermal distribution.
We study the non linear response of current-transport in a superconducting diffusive nanowire between normal reservoirs. We demonstrate theoretically and experimentally the existence of two different superconducting states appearing when the wire is driven out of equilibrium by an applied bias, called global and bimodal superconducting state. The different states are identified by using two probe measurements of the wire, and measurements of the local density of states with tunneling probes. The analysis is performed within the framework of the quasiclassical kinetic equations for diffusive superconductors.
We study a superconducting artificial atom which is represented by a single Josephson junction or a Josephson junction chain, capacitively coupled to a coherently driven transmission line, and which contains exactly one residual quasiparticle (or up to one quasiparticle per island in a chain). We study the dissipation in the atom induced by the quasiparticle tunneling, taking into account the quasiparticle heating by the drive. We calculate the transmission coefficient in the transmission line for drive frequencies near resonance and show that, when the artificial atom spectrum is nearly harmonic, the intrinsic quality factor of the resonance increases with the drive power. This counterintuitive behavior is due to the energy dependence of the quasiparticle density of states.
We study the response of a magnetic-field-driven superconducting qubit strongly coupled to a superconducting coplanar waveguide resonator. We observed a strong amplification/damping of a probing signal at different resonance points corresponding to a one and two-photon emission/absorption. The sign of the detuning between the qubit frequency and the probe determines whether amplification or damping is observed. The larger blue detuned driving leads to two-photon lasing while the larger red detuning cools the resonator. Our experimental results are in good agreement with the theoretical model of qubit lasing and cooling at the Rabi frequency.
We have observed signatures of resonant tunneling in an Al three-junction qubit, inductively coupled to a Nb LC tank circuit. The resonant properties of the tank oscillator are sensitive to the effective susceptibility (or inductance) of the qubit, w hich changes drastically as its flux states pass through degeneracy. The tunneling amplitude is estimated from the data. We find good agreement with the theoretical predictions in the regime of their validity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا