ترغب بنشر مسار تعليمي؟ اضغط هنا

H3O+ Line Emission from Starbursts and AGNs

136   0   0.0 ( 0 )
 نشر من قبل Susanne Aalto
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the H3O+ molecule to investigate the impact of starburst and AGN activity on the chemistry of the molecular interstellar medium. Using the JCMT, we have observed the 3+_2 - 2-_2 364 GHz line of p-H3O+ towards the centers of seven active galaxies. We have detected p-H3O+ towards IC342, NGC253, NGC1068, NGC4418, and NGC6240. Upper limits were obtained for IRAS15250 and Arp299. We find large H3O+ abundances (N(H3O+)/N(H2)>10^{-8}) in all detected galaxies apart from in IC342 where it is about one order of magnitude lower. We note, however, that uncertainties in N(H3O+) may be significant due to lack of definite information on source size and excitation. We furthermore compare the derived N(H3O+) with N(HCO+) and find that the H3O+ to HCO+ column density ratio is large in NGC1068 (24), moderate in NGC4418 and NGC253 (4-5), slightly less than unity in NGC6240 (0.7) and lowest in IC342 (0.2-0.6). We compare our results with models of X-ray and photon dominated regions (XDRs and PDRs). For IC342 we find that a starburst PDR chemistry can explain the observed H3O+ abundance. For the other galaxies, the large H3O+ columns are generally consistent with XDR models. In particular for NGC1068 the elevated N(H3O+)/N(HCO+) ratio suggests a low column density XDR. For NGC4418 however, large HC3N abundances are inconsistent with the XDR interpretation. An alternative possibility is that H3O+ forms through H2O evaporating off dust grains and reacting with HCO+ in warm, dense gas. This scenario could also potentially fit the results for NGC253. Further studies of the excitation and distribution of H3O+ - as well as Herschel observations of water abundances - will help to further constrain the models.



قيم البحث

اقرأ أيضاً

We calculated the polarization degree of hydrogen Balmer broad emission lines from a number of active galactic nuclei (AGNs) with determined virial factors. The objects were selected from the sample presented by Decarli et al.(2008). In our calculati ons, we used the model of the flattened disc-like structure of the broad-line emission region (BLR). In this model, the expression for the virial factor makes it possible to determine the inclination angle for the flattened BLR, which in turn yields the polarization degree of the broad emission lines. As a result, we obtained the direct relation between the polarization degree and the virial factor. We also compared the determined values of the polarization degree with those obtained in polarimetric observations.
We present new mid-infrared (MIR) diagnostics to distinguish emission of active galactic nuclei (AGN) from that originating in starburst regions. Our method uses empirical spectroscopic criteria based on the fact that MIR emission from star forming o r active galaxies arises mostly from HII regions, photo-dissociation regions (PDRs) and AGNs. The analysis of the strength of the 6.2micron Unidentified Infrared Band (UIB) and the MIR continuum shows that UIBs are very faint or absent in regions harboring the intense and hard radiation fields of AGNs and pure HII regions, where the UIB carriers could be destroyed. The MIR signature of AGNs is the presence of an important continuum in the 3-10micron band which originates from very hot dust heated by the intense AGN radiation field. Using these two distinct spectral properties found in our MIR templates, we build diagnostic diagrams which provide quantitative estimates of the AGN, PDR and HII region contribution in a given MIR spectrum. This new MIR classification can be used to reveal the presence of AGNs highly obscured by large columns of dust.
Despite substantial effort, the precise physical processes that lead to the growth of super-massive black holes in the centers of galaxies are still not well understood. These phases of black hole growth are thought to be of key importance in underst anding galaxy evolution. Forthcoming missions such as eROSITA, HETDEX, eBOSS, BigBOSS, LSST, and Pan-STARRS will compile by far the largest ever Active Galactic Nuclei (AGNs) catalogs which will allow us to measure the spatial distribution of AGNs in the universe with unprecedented accuracy. For the first time, AGN clustering measurements will reach a level of precision that will not only allow for an alternative approach to answering open questions in AGN/galaxy co-evolution but will open a new frontier, allowing us to precisely determine cosmological parameters. This paper reviews the large-scale clustering measurements of broad line AGNs. We summarize how clustering is measured and which constraints can be derived from AGN clustering measurements, we discuss recent developments, and we briefly describe future projects that will deliver extremely large AGN samples which will enable AGN clustering measurements of unprecedented accuracy. In order to maximize the scientific return on the research fields of AGN/galaxy evolution and cosmology, we advise that the community develop a full understanding of the systematic uncertainties which will, in contrast to todays measurement, be the dominant source of uncertainty.
260 - Sherry C. C. Yeh 2013
The emission line ratios [OIII]5007/H-beta and [NII]6584/H-alpha have been adopted as an empirical way to distinguish between the fundamentally different mechanisms of ionization in emission-line galaxies. However, detailed interpretation of these di agnostics requires calculations of the internal structure of the emitting HII regions, and these calculations depend on the assumptions one makes about the relative importance of radiation pressure and stellar winds. In this paper we construct a grid of quasi-static HII region models to explore how choices about these parameters alter HII regions emission line ratios. We find that, when radiation pressure is included in our models, HII regions reach a saturation point beyond which further increases in the luminosity of the driving stars does not produce any further increase in effective ionization parameter, and thus does not yield any further alteration in an HII regions line ratio. We also show that, if stellar winds are assumed to be strong, the maximum possible ionization parameter is quite low. As a result of this effect, it is inconsistent to simultaneously assume that HII regions are wind-blown bubbles and that they have high ionization parameters; some popular HII region models suffer from this inconsistency. Our work in this paper provides a foundation for a companion paper in which we embed the model grids we compute here within a population synthesis code that enables us to compute the integrated line emission from galactic populations of HII regions.
231 - Maryvonne Gerin 2010
We report the detection of absorption lines by the reactive ions OH+, H2O+ and H3O+ along the line of sight to the submillimeter continuum source G10.6$-$0.4 (W31C). We used the Herschel HIFI instrument in dual beam switch mode to observe the ground state rotational transitions of OH+ at 971 GHz, H2O+ at 1115 and 607 GHz, and H3O+ at 984 GHz. The resultant spectra show deep absorption over a broad velocity range that originates in the interstellar matter along the line of sight to G10.6$-$0.4 as well as in the molecular gas directly associated with that source. The OH+ spectrum reaches saturation over most velocities corresponding to the foreground gas, while the opacity of the H2O+ lines remains lower than 1 in the same velocity range, and the H3O+ line shows only weak absorption. For LSR velocities between 7 and 50 kms$^{-1}$ we estimate total column densities of $N$(OH+) $> 2.5 times 10^{14}$ cm$^{-2}$, $N$(H2O+) $sim 6 times 10^{13}$ cm$^{-2}$ and $N$(H3O+) $sim 4.0 times 10^{13}$ cm$^{-2}$. These detections confirm the role of O$^+$ and OH$^+$ in initiating the oxygen chemistry in diffuse molecular gas and strengthen our understanding of the gas phase production of water. The high ratio of the OH+ by the H2O+ column density implies that these species predominantly trace low-density gas with a small fraction of hydrogen in molecular form.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا