ﻻ يوجد ملخص باللغة العربية
We report the discovery ($20sigma$) of kilohertz quasi-periodic oscillations (kHz QPOs) at ~ 690 Hz from the transient neutron star low-mass X-ray binary EXO 1745-248. We find that this is a lower kHz QPO, and systematically study the time variation of its properties using smaller data segments with and without the shift-and-add technique. The quality (Q) factor occasionally significantly varies within short ranges of frequency and time. A high Q-factor (264.5 +- 38.5) of the QPO is found for a 200 s time segment, which might be the largest value reported in the literature. We argue that an effective way to rule out kHz QPO models is to observationally find such high Q-factors, even for a short duration, as many models cannot explain a high coherence. However, as we demonstrate, the shift-and-add technique cannot find a very high Q-factor which appears for a short period of time. This shows that the coherences of kHz QPOs can be higher than the already high values reported using this technique, implying further constraints on models. We also discuss the energy dependence of fractional rms amplitude and Q-factor of the kHz QPO.
We study the low-frequency timing properties and the spectral state evolution of the transient neutron star low-mass X-ray binary EXO 1745-248 using the entire Rossi X-ray Timing Explorer Proportional Counter Array data. We tentatively conclude that
When the accretion disc around a weakly magnetised neutron star (NS) meets the stellar surface, it should brake down to match the rotation of the NS, forming a boundary layer. As the mechanisms potentially responsible for this braking are apparently
High frequency quasi-periodic oscillations (QPOs) from weakly magnetized neutron stars display rapid frequency variability and high coherence with quality factors up to at least 200 at frequencies around 850 Hz. Their parameters have been estimated s
We study the energy-dependent time lags and rms fractional amplitude of the kilohertz quasi-periodic oscillations (kHz QPOs) of a group of neutron-star low mass X-ray binaries (LMXBs). We find that for the lower kHz QPO the slope of the best-fitting
We develop a new method to measure neutron star parameters and derive constraints on the equation of state of dense matter by fitting the frequencies of simultaneous Quasi Periodic Oscillation modes observed in the X-ray flux of accreting neutron sta