ترغب بنشر مسار تعليمي؟ اضغط هنا

Beta delayed emission of a proton by a one-neutron halo nucleus

148   0   0.0 ( 0 )
 نشر من قبل Ergash Tursunov M.
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Some one-neutron halo nuclei can emit a proton in a beta decay of the halo neutron. The branching ratio towards this rare decay mode is calculated within a two-body potential model of the initial core+neutron bound state and final core+proton scattering states. The decay probability per second is evaluated for the $^{11}$Be, $^{19}$C and $^{31}$Ne one-neutron halo nuclei. It is very sensitive to the neutron separation energy.



قيم البحث

اقرأ أيضاً

The neutron-rich $^{11}$Li halo nucleus is unique among nuclei with known separation energies by its ability to emit a proton and a neutron in a $beta$ decay process. The branching ratio towards this rare decay mode is evaluated within a three-body m odel for the initial bound state and with Coulomb three-body final scattering states. The branching ratio should be comprised between two extreme cases, i.e. a lower bound $6 times 10^{-12}$ obtained with a pure Coulomb wave and an upper bound $5 times 10^{-10}$ obtained with a plane wave. A simple model with modified Coulomb waves provides plausible values between between $0.8 times 10^{-10}$ and $2.2 times 10^{-10}$ with most probable total energies of the proton and neutron between 0.15 and 0.3 MeV.
60 - I. N. Borzov 2004
A systematic study of the total $beta$-decay half-lives and $beta$-delayed neutron emission probabilities is performed. The $beta$-strength function is treated within the self-consistent density-functional + continuum-QRPA framework including the Gam ow-Teller and first-forbidden transitions. The experimental total $beta$-decay half-lives for the Ni isotopes with $Aleq$76 are described satisfactorily. The half-lives predicted from $A$=70 up to $A$=86 reveal fairly regular $A$-behaviour which results from simultaneous account for the Gamow-Teller and first-forbidden transitions. For $Zapprox$ 28 nuclei, a suppression of the delayed neutron emission probability is found when the $N$=50 neutron closed shell is crossed. The effect originates from the high-energy first-forbidden transitions to the states outside the $Q_{beta} - S_n$-window in the daughter nuclei. PACS numbers: 23.40.Bw,21.60.Jz,25.30.Pt,26.30.+k
111 - D. Perez-Loureiro 2016
Background: Measurements of $beta$ decay provide important nuclear structure information that can be used to probe isospin asymmetries and inform nuclear astrophysics studies. Purpose: To measure the $beta$-delayed $gamma$ decay of $^{26}$P and compa re the results with previous experimental results and shell-model calculations. Method: A $^{26}$P fast beam produced using nuclear fragmentation was implanted into a planar germanium detector. Its $beta$-delayed $gamma$-ray emission was measured with an array of 16 high-purity germanium detectors. Positrons emitted in the decay were detected in coincidence to reduce the background. Results: The absolute intensities of $^{26}$P $beta$-delayed $gamma$-rays were determined. A total of six new $beta$-decay branches and 15 new $gamma$-ray lines have been observed for the first time in $^{26}$P $beta$-decay. A complete $beta$-decay scheme was built for the allowed transitions to bound excited states of $^{26}$Si. $ft$ values and Gamow-Teller strengths were also determined for these transitions and compared with shell model calculations and the mirror $beta$-decay of $^{26}$Na, revealing significant mirror asymmetries. Conclusions: A very good agreement with theoretical predictions based on the USDB shell model is observed. The significant mirror asymmetry observed for the transition to the first excited state ($delta=51(10)%$) may be evidence for a proton halo in $^{26}$P.
Beta-delayed neutron emission is important for nuclear structure and astrophysics as well as for reactor applications. Significant advances in nuclear experimental techniques in the past two decades have led to a wealth of new measurements that remai n to be incorporated in the databases. We report on a coordinated effort to compile and evaluate all the available beta-delayed neutron emission data. The different measurement techniques have been assessed and the data have been compared with semi-microscopic and microscopic-macroscopic models. The new microscopic database has been tested against aggregate total delayed neutron yields, time-dependent group parameters in 6-and 8-group re-presentation, and aggregate delayed neutron spectra. New recommendations of macroscopic delayed-neutron data for fissile materials of interest to applications are also presented. The new Reference Database for Beta-Delayed Neutron Emission Data is available online at: http://www-nds.iaea.org/beta-delayed-neutron/database.html.
The beta+ decay of very neutron deficient 43Cr has been studied by means of an imaging time projection chamber which allowed recording tracks of charged particles. Events of beta-delayed emission of one-, two-, and three protons were clearly identifi ed. The absolute branching ratios for these channels were determined to be 81(4)%, 7.1(4)%, and 0.08(3)%, respectively. The 43Cr is thus established as the second case in which the beta-3p decay occurs. Although the feeding to the proton-bound states in 43V is expected to be negligible, the large branching ratio of 12(4)% for decays without proton emission is found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا