ترغب بنشر مسار تعليمي؟ اضغط هنا

H.E.S.S. constraints on Dark Matter annihilations towards the Sculptor and Carina Dwarf Galaxies

153   0   0.0 ( 0 )
 نشر من قبل Aion Viana
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Sculptor and Carina Dwarf spheroidal galaxies were observed with the H.E.S.S. Cherenkov telescope array between January 2008 and December 2009. The data sets consist of a total of 11.8 and 14.8 hours of high quality data, respectively. No gamma-ray signal was detected at the nominal positions of these galaxies above 220 GeV and 320 GeV, respectively. Upper limits on the gamma-ray fluxes at 95% C.L. assuming two forms for the spectral energy distribution (a power law shape and one derived from dark matter annihilation) are obtained at the level of 10^-13 to 10^-12 cm^-2s^-1 in the TeV range. Constraints on the velocity weighted dark matter particle annihilation cross section for both Sculptor and Carina dwarf galaxies range from <sigma v> ~ 10^-21 cm^3s^-1 down to <sigma v> ~ 10^-22 cm^3s^-1 depending on the dark matter halo model used. Possible enhancements of the gamma-ray flux are studied: the Sommerfeld effect, which is found to exclude some dark matter particle masses, the internal Bremsstrahlung and clumps in the dark-matter halo distributions.



قيم البحث

اقرأ أيضاً

129 - A. Viana 2011
The H.E.S.S. experiment is an array of four identical imaging atmospheric Cherenkov telescopes in the Southern hemisphere, designed to observe very high energy gamma-rays (E > 100 GeV). These high energy gamma-rays can be used to search for annihilat ions of Dark Matter particles in dense environments. Dwarf galaxy dynamics shows that they are Dark Matter-dominated environments. Several observation campaigns on dwarf satellite galaxies of the Milky Way were launched by H.E.S.S.. The observations are reviewed. In the absence of clear signals, constraints on the Dark Matter particle annihilation cross-section have been derived in different particle physics scenarios. Some possible enhancements of the gamma-ray flux are studied, i.e., the Sommerfeld effect, the internal bremsstrahlung and the substructures in the Dark Matter halo.
High energy ${gamma}$-rays are powerful probes in the search for annihilations of dark matter (DM) par- ticles in dense environments. In several DM particle models their annihilation produces characteristic features such as lines, bumps or cut-offs i n their energy spectrum. The High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes is perfectly suited to search for such features from multi-TeV mass DM particles. The Dwarf Spheroidal Galaxies (dSphs) of the Local Group are the most common satellites of the Milky Way and assumed to be gravitationally bound dominantly by DM, with up to O(10 3 ) times more mass in DM than in visible matter. Over the past decade, several observational campaigns on dwarf satellite galaxies were launched by H.E.S.S. amounting to more than 140 hours of exposure in total. The observations are reviewed here. In the absence of clear signals, the expected spectral and spatial morphologies of signal and background are used to derive constraints on the DM particle annihilation cross- section for particle models producing line-like signals. The combination of the data of all the dwarf galaxies allows a significant improvement in the HESS sensitivity.
Dwarf spheroidal galaxies are among the most promising targets for detecting signals of Dark Matter (DM) annihilations. The H.E.S.S. experiment has observed five of these systems for a total of about 130 hours. The data are re-analyzed here, and, in the absence of any detected signals, are interpreted in terms of limits on the DM annihilation cross section. Two scenarios are considered: i) DM annihilation into mono-energetic gamma-rays and ii) DM in the form of pure WIMP multiplets that, annihilating into all electroweak bosons, produce a distinctive gamma-ray spectral shape with a high-energy peak at the DM mass and a lower-energy continuum. For case i), upper limits at 95% confidence level of about $langle sigma v rangle lesssim 3 times 10^{-25}$ cm$^3$ s$^{-1}$ are obtained in the mass range of 400 GeV to 1 TeV. For case ii), the full spectral shape of the models is used and several excluded regions are identified, but the thermal masses of the candidates are not robustly ruled out.
In the indirect dark matter (DM) detection framework, the DM particles would produce some signals by self-annihilating and creating standard model products such as gamma rays, which might be detected by ground-based telescopes. Dwarf irregular galaxi es represent promising targets for the search for DM as they are assumed to be dark matter dominated systems at all radii. These dwarf irregular galaxies are rotationally supported with relatively simple kinematics which lead to small uncertainties on their dark matter distribution profiles. In 2018, the H.E.S.S. telescopes observed the irregular dwarf galaxy Wolf-Lundmark-Melotte (WLM) for a live time of 19 hours. These observations are the very first ones made by an imaging atmospheric Cherenkov telescope toward this kind of object. We search for a DM signal looking for an excess of gamma rays over the background in the direction of the WLM galaxy. We present the first results obtained on the velocity weighted cross section for DM self-annihilation as a function of DM particle mass.
The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using $gamma$-ray observations towards the inner 300 parsecs of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant $gamma$-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section $langle sigma vrangle$. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach $langle sigma vrangle$ values of $rm 6times10^{-26} cm^3s^{-1}$ in the $W^+W^-$ channel for a DM particle mass of 1.5 TeV, and $rm 2times10^{-26} cm^3s^{-1}$ in the $tau^+tau^-$ channel for 1 TeV mass. For the first time, ground-based $gamma$-ray observations have reached sufficient sensitivity to probe $langle sigma vrangle$ values expected from the thermal relic density for TeV DM particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا