ﻻ يوجد ملخص باللغة العربية
The response of RPC detectors is highly sensitive to environmental variables. A novel approach is presented to model the response of RPC detectors in a variety of experimental conditions. The algorithm, based on Artificial Neural Networks, has been developed and tested on the CMS RPC gas gain monitoring system during commissioning.
Resistive gaseous detectors can be broadly defined as those operated in conditions where virtually no field lines exist that connect any two metallic electrodes sitting at different potential. This condition can be operationally recognized as no gas
Single gap Resistive Plate Chamber (RPC) is one of the very popular gaseous detectors used in high-energy physics experiments nowadays. It is a very fast detector having low cost of fabrication. The RPCs are usually built using glass or bakelite plat
The HL-LHC phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. To achieve this goal in a reasonable time scale the instantaneous luminosity would also increase by an order of magnitude up
Impurities in noble liquid detectors used for neutrino and dark matter experiments can significantly impact the quality of data. We present an experimentally verified model for describing the dynamics of impurity distributions in liquid argon (LAr) d
The Resistive Plate Chamber (RPC) is widely used in experiments of high energy physics as trigger detector as its good time resolution and high efficiency. In the traditional layout of RPC, the graphite layers are indispensable parts. The working vol