ﻻ يوجد ملخص باللغة العربية
The process $e^+e^- rightarrow Nbar N$ is studied nearby a threshold with account for polarizations of all initial and final particles. The nucleon polarization $bm zeta^N$ reveals a strong energy dependence due to that of the nucleon electromagnetic form factors $G_E(Q^2)$ and $G_M(Q^2)$ caused by the final-state interaction of nucleons. It is shown that the modulus of the ratio of these form factors and their relative phase can be determined by measuring $bm zeta^N$ along with the differential cross section. The polarization degree is analyzed using Paris $Nbar N$ optical potential for calculation of the form factors. It turns out that $|bm zeta^N|$ is high enough in a rather wide energy range above the threshold. Being especially high for longitudinally polarized beams, $|bm zeta^N|$ is noticeable even if both $e^+e^-$ beams are unpolarized.
Using recent BABAR, CMD-3 and SND data, the sum of $e^+e^- to 3(pi^+pi^-), 2(pi^+pi^-pi^0), pbar{p}, nbar{n}$ cross sections is obtained. Unlike $e^+e^- to 3(pi^+pi^-)$ and $e^+e^- to 2(pi^+pi^-pi^0)$ processes, no structures in total cross section a
We use the Paris nucleon-antinucleon optical potential for explanation of experimental data in the process $e^+e^- rightarrow pbar p$ near threshold. It turns out that final-state interaction due to Paris optical potential allows us to reproduce avai
The energy dependence of the cross sections of $pbar p$, $nbar n$, and meson production in $e^+e^-$ annihilation in the vicinity of the $pbar p$ and $nbar n$ thresholds is studied. The proton-neutron mass difference and the $pbar p$ Coulomb interacti
We consider the $pi^+pi^-pi_0gamma$ final state in electron-positron annihilation at cms energies not far from the threshold. Both initial and final state radiations of the hard photon is considered but without interference between them. The amplitud
Unexpected features of the BaBar data on e+e- in baryon-antibaryon cross sections are discussed. These data have been collected, with unprecedented accuracy, by means of the initial state radiation technique, which is particularly suitable in giving