ﻻ يوجد ملخص باللغة العربية
According to the modern cosmological paradigm galaxies and galaxy systems form from tiny density perturbations generated during the very early phase of the evolution of the Universe. Using numerical simulations we study the evolution of phases of density perturbations of different scales to understand the formation and evolution of the cosmic web. We apply the wavelet analysis to follow the evolution of high-density regions (clusters and superclusters) of the cosmic web. We show that the positions of maxima and minima of density waves (their spatial phases) almost do not change during the evolution of the structure. Positions of extrema of density perturbations are the more stable, the larger is the wavelength of perturbations. Combining observational and simulation data we conclude that the skeleton of the cosmic web was present already in an early stage of structure evolution.
The $beta$-skeleton is a mathematical method to construct graphs from a set of points that has been widely applied in the areas of image analysis, machine learning, visual perception, and pattern recognition. In this work, we apply the $beta$-skeleto
Aims. We develop an extended percolation method to allow the comparison of geometrical properties of the real cosmic web with the simulated dark matter web for an ensemble of over- and under-density systems. Methods. We scan density fields of dark ma
The cosmic web is the largest scale manifestation of the anisotropic gravitational collapse of matter. It represents the transitional stage between linear and non-linear structures and contains easily accessible information about the early phases of
We investigate the ability of three reconstruction techniques to analyze and investigate weblike features and geometries in a discrete distribution of objects. The three methods are the linear Delaunay Tessellation Field Estimator (DTFE), its higher
We analyze the structure and connectivity of the distinct morphologies that define the Cosmic Web. With the help of our Multiscale Morphology Filter (MMF), we dissect the matter distribution of a cosmological $Lambda$CDM N-body computer simulation in