ﻻ يوجد ملخص باللغة العربية
Massive galaxies today typically are not forming stars despite being surrounded by hot gaseous halos with short central cooling times. This likely owes to some form of quenching feedback such as merger-driven quasar activity or radio jets emerging from central black holes. Here we implement heuristic prescriptions for these phenomena on-the-fly within cosmological hydrodynamic simulations. We constrain them by comparing to observed luminosity functions and color-magnitude diagrams from SDSS. We find that quenching from mergers alone does not produce a realistic red sequence, because 1 - 2 Gyr after a merger the remnant accretes new fuel and star formation reignites. In contrast, quenching by continuously adding thermal energy to hot gaseous halos quantitatively matches the red galaxy luminosity function and produces a reasonable red sequence. Small discrepancies remain - a shallow red sequence slope suggests that our models underestimate metal production or retention in massive red galaxies, while a deficit of massive blue galaxies may reflect the fact that observed heating is intermittent rather than continuous. Overall, injection of energy into hot halo gas appears to be a necessary and sufficient condition to broadly produce red and dead massive galaxies as observed.
We study the nature of rapidly star-forming galaxies at z=2 in cosmological hydrodynamic simulations, and compare their properties to observations of sub-millimetre galaxies (SMGs). We identify simulated SMGs as the most rapidly star-forming systems
We examine the global HI properties of galaxies in quarter-billion particle cosmological simulations using Gadget-2, focusing on how galactic outflows impact HI content. We consider four outflow models, including a new one (ezw) motivated by recent i
We examine the past and current work on the star formation (SF) histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandab
Recently Menard et al. detected a subtle but systematic change in the mean color of quasars as a function of their projected separation from foreground galaxies, extending to comoving separations of ~10Mpc/h, which they interpret as a signature of re
In order to investigate the structure and dynamics of the recently discovered massive (M_* > 10^11 M_sun) compact z~2 galaxies, cosmological hydrodynamical/N-body simulations of a proto-cluster region have been undertaken. At z=2, the highest resolut