ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling the Magnetic Field in the Galactic Disk using New Rotation Measure Observations from the Very Large Array

207   0   0.0 ( 0 )
 نشر من قبل Jo-Anne Brown
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have determined 194 Faraday rotation measures (RMs) of polarized extragalactic radio sources using new, multi-channel polarization observations at frequencies around 1.4 GHz from the Very Large Array (VLA) in the Galactic plane at $17^circ leq l leq 63^circ$ and $205^circ leq l leq 253^circ$. This catalog fills in gaps in the RM coverage of the Galactic plane between the Canadian Galactic Plane Survey and Southern Galactic Plane Survey. Using this catalog we have tested the validity of recently-proposed axisymmetric and bisymmetric models of the large-scale (or regular) Galactic magnetic field, and found that of the existing models we tested, an axisymmetric spiral model with reversals occurring in rings (as opposed to along spiral arms) best matched our observations. Building on this, we have performed our own modeling, using RMs from both extragalactic sources and pulsars. By developing independent models for the magnetic field in the outer and inner Galaxy, we conclude that in the inner Galaxy, the magnetic field closely follows the spiral arms, while in the outer Galaxy, the field is consistent with being purely azimuthal.Furthermore, the models contain no reversals in the outer Galaxy, and together seem to suggest the existence of a single reversed region that spirals out from the Galactic center.



قيم البحث

اقرأ أيضاً

113 - J. L. Han 2017
We present the measurements of Faraday rotation for 477 pulsars observed by the Parkes 64-m radio telescope and the Green Bank 100-m radio telescope. Using these results along with previous measurements for pulsars and extra-galactic sources, we anal yse the structure of the large-scale magnetic field in the Galactic disk. Comparison of rotation measures of pulsars in the disk at different distances as well as with rotation measures of background radio sources beyond the disk reveals large-scale reversals of the field directions between spiral arms and interarm regions. We develop a model for the disk magnetic field, which can reproduce not only these reversals but also the distribution of observed rotation measures of background sources.
Faraday rotation provides a valuable tracer of magnetic fields in the interstellar medium; catalogs of Faraday rotation measures provide key observations for studies of the Galactic magnetic field. We present a new catalog of rotation measures derive d from the Canadian Galactic Plane Survey, covering a large region of the Galactic plane spanning 52 deg < l < 192 deg, -3 deg < b < 5 deg, along with northern and southern latitude extensions around l ~ 105 deg. We have derived rotation measures for 2234 sources (4 of which are known pulsars), 75% of which have no previous measurements, over an area of approximately 1300 square degrees. These new rotation measures increase the measurement density for this region of the Galactic plane by a factor of two.
The IMAGINE Consortium aims to bring modeling of the magnetic field of the Milky Way to a next level, by using Bayesian inference. IMAGINE includes an open-source modular software pipeline that optimizes parameters in a user-defined Galactic magnetic field model against various selected observational datasets. Bayesian priors can be added as external probabilistic constraints of the model parameters. These conference proceedings describe the science goals of the IMAGINE Consortium, the software pipeline and its inputs, viz observational data sets, Galactic magnetic field models, and Bayesian priors.
Galaxy mergers play an important role in the growth of galaxies and their supermassive black holes. Simulations suggest that tidal interactions could enhance black hole accretion, which can be tested by the fraction of binary active galactic nuclei ( AGNs) among galaxy mergers. But determining the fraction requires a statistical sample of binaries. We have identified kpc-scale binary AGNs directly from high-resolution radio imaging. Inside the 92 square deg covered by the high-resolution Very Large Array survey of the Sloan Digital Sky Survey (SDSS) Stripe 82 field, we identified 22 grade A and 30 grade B candidates of binary radio AGNs with angular separations less than 5 (10 kpc at z = 0.1). Eight of the candidates have optical spectra for both components from the SDSS spectroscopic surveys and our Keck program. Two grade B candidates are projected pairs, but the remaining six candidates are all compelling cases of binary AGNs based on either emission line ratios or the excess in radio power compared to the H-alpha-traced star formation rate. Only two of the six binaries were previously discovered by an optical spectroscopic search. Based on these results, we estimate that ~60% of our binary candidates would be confirmed once we obtain complete spectroscopic information. We conclude that wide-area high-resolution radio surveys offer an efficient method to identify large samples of binary AGNs. These radio-selected binary AGNs complement binaries identified at other wavelengths and are useful for understanding the triggering mechanisms of black hole accretion.
101 - C. J. Law , 2011
We present new 6 and 20 cm Very Large Array (VLA) observations of polarized continuum emission of roughly 0.5 square degrees of the Galactic center (GC) region. The 6 cm observations detect diffuse linearly-polarized emission throughout the region wi th a brightness of roughly 1 mJy per 15x10 beam. The Faraday rotation measure (RM) toward this polarized emission has structure on degree size scales and ranges from roughly +330 rad/m2 east of the dynamical center (Sgr A) to -880 rad/m2 west of the dynamical center. This RM structure is also seen toward several nonthermal radio filaments, which implies that they have a similar magnetic field orientation and constrains models for their origin. Modeling shows that the RM and its change with Galactic longitude are best explained by the high electron density and strong magnetic field of the GC region. Considering the emissivity of the GC plasma shows that while the absolute RM values are indirect measures of the GC magnetic field, the RM longitude structure directly traces the magnetic field in the central kiloparsec of the Galaxy. Combining this result with previous work reveals a larger RM structure covering the central ~2 degrees of the Galaxy. This RM structure is similar to that proposed by Novak and coworkers, but is shifted roughly 50 pc west of the dynamical center of the Galaxy. If this RM structure originates in the GC region, it shows that the GC magnetic field is organized on ~300 pc size scales. The pattern is consistent with a predominantly poloidal field geometry, pointing from south to north, that is perturbed by the motion of gas in the Galactic disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا