ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio Flaring Activity of 3C 345 and its Connection to Gamma-ray Emission

200   0   0.0 ( 0 )
 نشر من قبل Frank Schinzel
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

3C 345 is one of the archetypical active galactic nuclei, showing structural and flux variability on parsec scales near a compact unresolved radio core. During the last 2 years, the source has been undergoing a period of high activity visible in the broad spectral range, from radio through high-energy bands. We have been monitoring parsec-scale radio emission in 3C 345 during this period at monthly intervals, using the VLBA at 15, 24, and 43 GHz. Our radio observations are compared with gamma-ray emission detected by Fermi-LAT in the region including 3C 345 (1FGL J1642.5+3947). Three distinct gamma-ray events observed in this region are associated with the propagation of relativistic plasma condensations inside the radio jet of 3C 345. We report on evidence for the gamma-rays to be produced in a region of the jet of up to 40 pc (de-projected) in extent. This suggests the synchrotron self-Compton process as the most likely mechanism for production of gamma-rays in the source.



قيم البحث

اقرأ أيضاً

3C 84 (NGC 1275) is the bright radio core of the Perseus Cluster. Even in the absence of strong relativistic effects, the source has been detected at Gamma-rays up to TeV energies. Despite its intensive study, the physical processes responsible for t he high-energy emission in the source remain unanswered. We present a detailed kinematics study of the source and its connection to Gamma-ray emission. The sub-parsec scale radio structure is dominated by slow-moving features in both the eastern and western lanes of the jet. The jet appears to have accelerated to its maximum speed within less than 125 000 gravitational radii. The fastest reliably detected speed in the jet was ~0.9 c. This leads to a minimum Lorentz factor of ~1.35. Our analysis suggests the presence of multiple high-energy sites in the source. If Gamma-rays are associated with kinematic changes in the jet, they are being produced in both eastern and western lanes in the jet. Three Gamma-ray flares are contemporaneous with epochs where the slowly moving emission region splits into two sub-regions. We estimate the significance of these events being associated as ~2-3 sigma. We tested our results against theoretical predictions for magnetic reconnection-induced mini-jets and turbulence and find them compatible.
We present the analysis of the radio jet evolution of the radio galaxy 3C 120 during a period of prolonged gamma-ray activity detected by the Fermi satellite between December 2012 and October 2014. We find a clear connection between the gamma-ray and radio emission, such that every period of gamma-ray activity is accompanied by the flaring of the mm-VLBI core and subsequent ejection of a new superluminal component. However, not all ejections of components are associated with gamma-ray events detectable by Fermi. Clear gamma-ray detections are obtained only when components are moving in a direction closer to our line of sight.This suggests that the observed gamma-ray emission depends not only on the interaction of moving components with the mm-VLBI core, but also on their orientation with respect to the observer. Timing of the gamma-ray detections and ejection of superluminal components locate the gamma-ray production to within almost 0.13 pc from the mm-VLBI core, which was previously estimated to lie about 0.24 pc from the central black hole. This corresponds to about twice the estimated extension of the broad line region, limiting the external photon field and therefore suggesting synchrotron self Compton as the most probable mechanism for the production of the gamma-ray emission. Alternatively, the interaction of components with the jet sheath can provide the necessary photon field to produced the observed gamma-rays by Compton scattering.
According to radiative models, radio galaxies are predicted to produce gamma rays from the earliest stages of their evolution onwards.The study of the high-energy emission from young radio sources is crucial for providing information on the most ener getic processes associated with these sources, the actual region responsible for this emission, as well as the structure of the newly born radio jets. Despite systematic searches for young radio sources at gamma-ray energies, only a handful of detections have been reported so far. Taking advantage of more than 11 years of textit{Fermi}-LAT data, we investigate the gamma-ray emission of 162 young radio sources (103 galaxies and 59 quasars), the largest sample of young radio sources used so far for a gamma-ray study. We analyse the textit{Fermi}-LAT data of each individual source separately to search for a significant detection. In addition, we perform the first stacking analysis of this class of sources in order to investigate the gamma-ray emission of the young radio sources that are undetected at high energies. We report the detection of significant gamma-ray emission from 11 young radio sources, including the discovery of significant gamma-ray emission from the compact radio galaxy PKS 1007+142. Although the stacking analysis of below-threshold young radio sources does not result in a significant detection, it provides stringent upper limits to constrain the gamma-ray emission from these objects. In this talk we present the results of our study and we discuss their implications for the predictions of gamma-ray emission from this class of sources.
Blazars are a sub-category of radio-loud active galactic nuclei with relativistic jets pointing towards to the observer. They are well-known for their non-thermal variable emission, which practically extends over the whole electromagnetic spectrum. D espite the plethora of multi-wavelength observations, the issue about the origin of the $gamma$-ray and radio emission in blazar jets remains unsettled. Here, we construct a parametric leptonic model for studying the connection between the $gamma$-ray and radio emission in both steady-state and flaring states of blazars. Assuming that relativistic electrons are injected continuously at a fixed distance from the black hole, we numerically study the evolution of their population as it propagates to larger distances while losing energy due to expansion and radiative cooling. In this framework, $gamma$-ray photons are naturally produced at small distances (e.g. $10^{-3}$ pc) when the electrons are still very energetic, whereas the radio emission is produced at larger distances (e.g. $1$ pc), after the electrons have cooled and the emitting region has become optically thin to synchrotron self-absorption due to expansion. We present preliminary results of our numerical investigation for the steady-state jet emission and the predicted time lags between $gamma$-rays and radio during flares.
136 - S. Vercellone 2012
3C 454.3 is the most variable and intense extragalactic gamma-ray blazar detected by AGILE and Fermi during the last 4 years. This remarkable source shows extreme flux variability (about a fact or of 20) on a time-scale of 24-48 hours, as well as rep eated flares on a time-scale of more than a year. The dynamic range, from the quiescence up to the most intense gamma-ray super-flare, is of about two orders of magnitude. We present the gamma-ray properties of 3C 454.3, comparing both the characteristics of flares at different levels and their multi-wavelength behavior. Moreover, an interpretation of both the long- and short-term properties of 3C 454.3 is reviewed, with particular emphasis on the two gamma-ray super-flares observed in 2009 and 2010, when 3C 454.3 became the brightest source of the whole gamma-ray sky.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا