ﻻ يوجد ملخص باللغة العربية
The very high energy (VHE; E > 100 GeV) blazar Markarian 501 has a well-studied history of extreme spectral variability and is an excellent laboratory for studying the physical processes within the jets of active galactic nuclei. However, there are few detailed multiwavelength studies of Markarian 501 during its quiescent state, due to its low luminosity. A short-term multiwavelength study of Markarian 501 was coordinated in March 2009, focusing around a multi-day observation with the Suzaku X-ray satellite and including {gamma}-ray data from VERITAS, MAGIC, and the Fermi Gamma-ray Space Telescope with the goal of providing a well-sampled multiwavelength baseline measurement of Markarian 501 in the quiescent state. The results of these quiescent-state observations are compared to the historically extreme outburst of April 16, 1997, with the goal of examining variability of the spectral energy distribution between the two states. The derived broadband spectral energy distribution shows the characteristic double-peaked profile. We find that the X-ray peak shifts by over two orders of magnitude in photon energy between the two flux states while the VHE peak varies little. The limited shift in the VHE peak can be explained by the transition to the Klein-Nishina regime. Synchrotron self-Compton models are matched to the data and the implied Klein-Nishina effects are explored.
The very high energy (VHE; E $>$ 100 GeV) blazar Markarian 501 was observed between April 17 and May 5 (MJD 54938--54956), 2009, as part of an extensive multi-wavelength campaign from radio to VHE. Strong VHE $gamma$-ray activity was detected on May
A multiwavelength campaign was organized to take place between March and July of 2012. Excellent temporal coverage was obtained with more than 25 instruments, including the MAGIC, FACT and VERITAS Cherenkov telescopes, the instruments on board the Sw
We present a multiwavelength study of the black hole X-ray binary V404 Cyg in quiescence, focusing upon the spectral energy distribution (SED). Radio, optical, UV, and X-ray coverage is simultaneous. We supplement the SED with additional non-simultan
We report on the gamma-ray activity of the high-synchrotron-peaked BL Lacertae object Mrk 421 during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) gamma-ray spectrum above 0.3
We report on the quiescent state of the Soft Gamma Repeater SGR 0501+4516 observed by XMM-Newton on 2009 August 30. The source exhibits an absorbed flux ~75 times lower than that measured at the peak of the 2008 outburst, and a rather soft spectrum,